Dissipative property for higher order nonlinear Schrödinger equation

被引:0
作者
Naumkin P.I. [1 ]
Sánchez-Suárez I. [2 ]
机构
[1] Centro de Ciencias Matemáticas UNAM Campus Morelia, AP 61-3 (Xangari) Morelia CP 58089, Michoacán, México
[2] Universidad Politécnica de Uruapan
关键词
Decay estimates; Dispersive equations; Nonlinear Schrödinger equation; Scattering theory;
D O I
10.1016/j.na.2019.05.018
中图分类号
O172 [微积分];
学科分类号
摘要
We consider the Cauchy problem for the higher-order nonlinear Schrödinger equation i∂tu+1/2∂x 2u−1/4∂x 4u=i3λ1u3+λ2u2u,t>1,x∈R,u1,x=u0x,x∈R,where the coefficients 0<λ1<λ2. The aim of the present paper is to prove the global existence of solutions to (??). Also we find the large time decay estimates for the solutions. © 2019 Elsevier Ltd
引用
收藏
页码:91 / 124
页数:33
相关论文
共 31 条
[11]  
Hayashi N., Global existence of small solutions to quadratic nonlinear Schrödinger equations, Commun. PDE., 18, pp. 1109-1124, (1993)
[12]  
Hayashi N., Naumkin P.I., The initial value problem for the cubic nonlinear Klein-Gordon equation, Z. Angew. Math. Phys., 59, 6, pp. 1002-1028, (2008)
[13]  
Hayashi N., Naumkin P.I., Global existence and asymptotic behavior of solutions to the fourth-order nonlinear Schrödinger equation in the critical case, Nonlinear Anal., 116, pp. 112-131, (2015)
[14]  
Hayashi N., Naumkin P.I., Logarithmic time decay for the cubic nonlinear Schrödinger equations, Int. Math. Res. Not. IMRN, 14, pp. 5604-5643, (2015)
[15]  
Hayashi N., Naumkin P.I., On the inhomogeneous fourth-order nonlinear Schrödinger equation, J. Math. Phys., 56, 9, (2015)
[16]  
Hayashi N., Ozawa T., Scattering theory in the weighted L<sup>2</sup>(R<sup>n</sup>) spaces for some Schrödinger equations, Ann. I.H.P. (Phys. Théor.), 48, pp. 17-37, (1988)
[17]  
Huo Z., Jia Y., The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, J. Differential Equations, 214, pp. 1-35, (2005)
[18]  
Hwang I.L., The L<sup>2</sup> -boundedness of pseudodifferential operators, Trans. Amer. Math. Soc., 302, 1, pp. 55-76, (1987)
[19]  
Kaikina E.I., Korpusov M.O., Naumkin P.I.
[20]  
Karpman V.I., Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53, 2, pp. 1336-1339, (1996)