Evasion Attacks in Smart Power Grids: A Deep Reinforcement Learning Approach

被引:2
作者
El-Toukhy, Ahmed T. [1 ]
Mahmoud, Mohamed [2 ]
Bondok, Atef H. [3 ]
Fouda, Mostafa M. [4 ]
Alsabaan, Maazen [5 ]
机构
[1] Tennessee Technol Univ, Dept Elect & Comp Engn, Cookeville, TN 38505 USA
[2] Al Azhar Univ, Dept Elect Engn, Fac Engn, Cairo, Egypt
[3] Idaho State Univ, Dept Elect & Comp Engn, Pocatello, ID USA
[4] Ctr Adv Energy Studies CAES, Idaho Falls, ID USA
[5] King Saud Univ, Dept Comp Engn, Riyadh, Saudi Arabia
来源
2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC | 2024年
关键词
Security; electricity theft; evasion attacks; reinforcement learning; smart power grids;
D O I
10.1109/CCNC51664.2024.10454768
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In smart power grids, certain customers are motivated by financial gains to manipulate electricity consumption data, aiming to reduce their bills. Despite the development of machine learning-based detectors, these systems remain vulnerable to evasion attacks. This paper investigates the susceptibility of deep reinforcement learning (DRL)-based detectors to evasion attacks. We propose an evasion attack model that employs the double deep Q learning (DDQN) algorithm for a black-box attack scenario. Our model generates adversarial evasion samples by altering malicious consumption data, tricking detectors into classifying them as benign. Leveraging the unique attributes of reinforcement learning (RL), our model determines optimal actions for manipulating malicious data. For comparative analysis, we compare our DRL-based model with an FGSM-based attack model. Our experiments consistently demonstrate the effectiveness of our DRL-based attack model, achieving an impressive attack success rate (ASR) ranging from 92.92% to 99.96%, outperforming the FGSM-based attack model.
引用
收藏
页码:708 / 713
页数:6
相关论文
共 21 条
[1]   Real-Time Detection of False Readings in Smart Grid AMI Using Deep and Ensemble Learning [J].
Abdulaal, Mohammed J. ;
Ibrahem, Mohamed I. ;
Mahmoud, Mohamed M. E. A. ;
Khalid, Junaid ;
Aljohani, Abdulah Jeza ;
Milyani, Ahmad H. ;
Abusorrah, Abdullah M. .
IEEE ACCESS, 2022, 10 :47541-47556
[2]  
[Anonymous], Irish social science data archive
[3]  
Badr M.M., 2023, IEEE Internet of Things Journal
[4]   A Novel Evasion Attack Against Global Electricity Theft Detectors and a Countermeasure [J].
Badr, Mahmoud M. ;
Mahmoud, Mohamed M. E. A. ;
Abdulaal, Mohammed ;
Aljohani, Abdulah Jeza ;
Alsolami, Fawaz ;
Balamsh, Abdullah .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (12) :11038-11053
[5]   Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids [J].
Badr, Mahmoud M. ;
Mahmoud, Mohamed M. E. A. ;
Fang, Yuguang ;
Abdulaal, Mohammed ;
Aljohani, Abdulah Jeza ;
Alasmary, Waleed ;
Ibrahem, Mohamed I. .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (09) :7719-7736
[6]  
Bhat RR, 2016, 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), P272, DOI [10.1109/ICMLA.2016.0052, 10.1109/ICMLA.2016.107]
[7]   Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters [J].
Buzau, Madalina-Mihaela ;
Tejedor-Aguilera, Javier ;
Cruz-Romero, Pedro ;
Gomez-Exposito, Antonio .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (02) :1254-1263
[8]   Electricity Theft Detection Using Deep Reinforcement Learning in Smart Power Grids [J].
El-Toukhy, Ahmed T. ;
Badr, Mahmoud M. ;
Mahmoud, Mohamed M. E. A. ;
Srivastava, Gautam ;
Fouda, Mostafa M. ;
Alsabaan, Maazen .
IEEE ACCESS, 2023, 11 :59558-59574
[9]   Clustering and Ensemble Based Approach for Securing Electricity Theft Detectors Against Evasion Attacks [J].
Elgarhy, Islam ;
Badr, Mahmoud M. ;
Mahmoud, Mohamed M. E. A. ;
Fouda, Mostafa M. ;
Alsabaan, Maazen ;
Kholidy, Hisham A. .
IEEE ACCESS, 2023, 11 :112147-112164
[10]  
Ibrahem M. I., 2020, P INT S NETW COMP CO, P1