Interactive molecular causal networks of hypertension using a fast machine learning algorithm MRdualPC

被引:0
作者
Kelly, Jack [1 ]
Xu, Xiaoguang [2 ]
Eales, James M. [2 ]
Keavney, Bernard [2 ,3 ,4 ]
Berzuini, Carlo [1 ]
Tomaszewski, Maciej [2 ,4 ,5 ]
Guo, Hui [1 ]
机构
[1] Univ Manchester, Fac Biol Med & Hlth, Manchester Acad Hlth Sci Ctr, Sch Hlth Sci, Manchester, Lancashire, England
[2] Univ Manchester, Fac Med Biol & Hlth, Div Cardiovasc Sci, Manchester, England
[3] Manchester Univ NHS Fdn Trust, Div Cardiol, Manchester, England
[4] Manchester Univ NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, England
[5] Manchester Univ NHS Fdn Trust, Manchester Heart Ctr, Manchester, England
关键词
Molecular networks; Causal inference; Machine learning; Hypertension; MRdualPC; Multi-omics integration; BLOOD-PRESSURE; ASSOCIATION; MECHANISMS; VARIANTS; PACKAGE;
D O I
10.1186/s12874-024-02229-y
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BackgroundUnderstanding the complex interactions between genes and their causal effects on diseases is crucial for developing targeted treatments and gaining insight into biological mechanisms. However, the analysis of molecular networks, especially in the context of high-dimensional data, presents significant challenges.MethodsThis study introduces MRdualPC, a computationally tractable algorithm based on the MRPC approach, to infer large-scale causal molecular networks. We apply MRdualPC to investigate the upstream causal transcriptomics influencing hypertension using a comprehensive dataset of kidney genome and transcriptome data.ResultsOur algorithm proves to be 100 times faster than MRPC on average in identifying transcriptomics drivers of hypertension. Through clustering, we identify 63 modules with causal driver genes, including 17 modules with extensive causal networks. Notably, we find that genes within one of the causal networks are associated with the electron transport chain and oxidative phosphorylation, previously linked to hypertension. Moreover, the identified causal ancestor genes show an over-representation of blood pressure-related genes.ConclusionsMRdualPC has the potential for broader applications beyond gene expression data, including multi-omics integration. While there are limitations, such as the need for clustering in large gene expression datasets, our study represents a significant advancement in building causal molecular networks, offering researchers a valuable tool for analyzing big data and investigating complex diseases.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Learning Causal Biological Networks With the Principle of Mendelian Randomization [J].
Badsha, Md Bahadur ;
Fu, Audrey Qiuyan .
FRONTIERS IN GENETICS, 2019, 10
[2]   An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks [J].
Botia, Juan A. ;
Vandrovcova, Jana ;
Forabosco, Paola ;
Guelfi, Sebastian ;
D'Sa, Karishma ;
Hardy, John ;
Lewis, Cathryn M. ;
Ryten, Mina ;
Weale, Michael E. .
BMC SYSTEMS BIOLOGY, 2017, 11
[3]   Enrichr: interactive and collaborative HTML']HTML5 gene list enrichment analysis tool [J].
Chen, Edward Y. ;
Tan, Christopher M. ;
Kou, Yan ;
Duan, Qiaonan ;
Wang, Zichen ;
Meirelles, Gabriela Vaz ;
Clark, Neil R. ;
Ma'ayan, Avi .
BMC BIOINFORMATICS, 2013, 14
[4]   Worldwide epidemic of hypertension [J].
Chockalingam, Arun ;
Campbell, Norman R. ;
Fodor, J. George .
CANADIAN JOURNAL OF CARDIOLOGY, 2006, 22 (07) :553-555
[5]   Role of mitochondrial oxidative stress in hypertension [J].
Dikalov, Sergey I. ;
Ungvari, Zoltan .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2013, 305 (10) :H1417-H1427
[6]   Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney [J].
Eales, James M. ;
Jiang, Xiao ;
Xu, Xiaoguang ;
Saluja, Sushant ;
Akbarov, Artur ;
Cano-Gamez, Eddie ;
McNulty, Michelle T. ;
Finan, Christopher ;
Guo, Hui ;
Wystrychowski, Wojciech ;
Szulinska, Monika ;
Thomas, Huw B. ;
Pramanik, Sanjeev ;
Chopade, Sandesh ;
Prestes, Priscilla R. ;
Wise, Ingrid ;
Evangelou, Evangelos ;
Salehi, Mahan ;
Shakanti, Yusif ;
Ekholm, Mikael ;
Denniff, Matthew ;
Nazgiewicz, Alicja ;
Eichinger, Felix ;
Godfrey, Bradley ;
Antczak, Andrzej ;
Glyda, Maciej ;
Krol, Robert ;
Eyre, Stephen ;
Brown, Jason ;
Berzuini, Carlo ;
Bowes, John ;
Caulfield, Mark ;
Zukowska-Szczechowska, Ewa ;
Zywiec, Joanna ;
Bogdanski, Pawel ;
Kretzler, Matthias ;
Woolf, Adrian S. ;
Talavera, David ;
Keavney, Bernard ;
Maffia, Pasquale ;
Guzik, Tomasz J. ;
O'Keefe, Raymond T. ;
Trynka, Gosia ;
Samani, Nilesh J. ;
Hingorani, Aroon ;
Sampson, Matthew G. ;
Morris, Andrew P. ;
Charchar, Fadi J. ;
Tomaszewski, Maciej .
NATURE GENETICS, 2021, 53 (05) :630-+
[7]   The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals [J].
Ehret, Georg B. ;
Ferreira, Teresa ;
Chasman, Daniel I. ;
Jackson, Anne U. ;
Schmidt, Ellen M. ;
Johnson, Toby ;
Thorleifsson, Gudmar ;
Luan, Jian'an ;
Donnelly, Louise A. ;
Kanoni, Stavroula ;
Petersen, Ann -Kristin ;
Pihurl, Vasyl ;
Strawbridge, Rona J. ;
Shungin, Dmitry ;
Hughes, Maria F. ;
Meirelles, Osorio ;
Kaakinen, Marika ;
Bouatia-Naji, Nabila ;
Kristiansson, Kati ;
Shah, Sonia ;
Kleber, Marcus E. ;
Guo, Xiuqing ;
Lyytikainen, Leo-Pekka ;
Fava, Cristiano ;
Eriksson, Nidas ;
Nolte, Ilja M. ;
Magnusson, Patrik K. ;
Salfati, Elias L. ;
Rallidis, Loukianos S. ;
Theusch, Elizabeth ;
Smith, Andrew J. P. ;
Folkersen, Lasse ;
Witkowska, Kate ;
Pers, Tune H. ;
Joehanes, Roby ;
Kim, Stuart K. ;
Lataniotis, Lazaros ;
Jansen, Rick ;
Johnson, Andrew D. ;
Warren, Helen ;
Kim, Young Jin ;
Zhao, Wei ;
Wu, Ying ;
Tayo, Bamidele O. ;
Bochud, Murielle ;
Absher, Devin ;
Adair, Linda S. ;
Amin, Najaf ;
Arkingl, Dan E. ;
Axelsson, Tomas .
NATURE GENETICS, 2016, 48 (10) :1171-1184
[8]   Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk [J].
Ehret, Georg B. ;
Munroe, Patricia B. ;
Rice, Kenneth M. ;
Bochud, Murielle ;
Johnson, Andrew D. ;
Chasman, Daniel I. ;
Smith, Albert V. ;
Tobin, Martin D. ;
Verwoert, Germaine C. ;
Hwang, Shih-Jen ;
Pihur, Vasyl ;
Vollenweider, Peter ;
O'Reilly, Paul F. ;
Amin, Najaf ;
Bragg-Gresham, Jennifer L. ;
Teumer, Alexander ;
Glazer, Nicole L. ;
Launer, Lenore ;
Zhao, Jing Hua ;
Aulchenko, Yurii ;
Heath, Simon ;
Sober, Siim ;
Parsa, Afshin ;
Luan, Jian'an ;
Arora, Pankaj ;
Dehghan, Abbas ;
Zhang, Feng ;
Lucas, Gavin ;
Hicks, Andrew A. ;
Jackson, Anne U. ;
Peden, John F. ;
Tanaka, Toshiko ;
Wild, Sarah H. ;
Rudan, Igor ;
Igl, Wilmar ;
Milaneschi, Yuri ;
Parker, Alex N. ;
Fava, Cristiano ;
Chambers, John C. ;
Fox, Ervin R. ;
Kumari, Meena ;
Go, Min Jin ;
van der Harst, Pim ;
Kao, Wen Hong Linda ;
Sjogren, Marketa ;
Vinay, D. G. ;
Alexander, Myriam ;
Tabara, Yasuharu ;
Shaw-Hawkins, Sue ;
Whincup, Peter H. .
NATURE, 2011, 478 (7367) :103-109
[9]   Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits [J].
Evangelou, Evangelos ;
Warren, Helen R. ;
Mosen-Ansorena, David ;
Mifsu, Borbala ;
Pazoki, Raha ;
Gao, He ;
Ntritsos, Georgios ;
Dimou, Niki ;
Cabrer, Claudia P. ;
Karaman, Ibrahim ;
Ng, FuLiang ;
Evangelou, Marina ;
Witkowska, Katarzyna ;
Tzanis, Evan ;
Hellwege, Jacklyn N. ;
Giri, Ayush ;
Edwards, Digna R. Velez ;
Sun, Yan, V ;
Cho, Kelly ;
Gaziano, J. Michael ;
Wilson, Peter W. F. ;
Tsao, Philip S. ;
Kovesdy, Csaba P. ;
Esko, Tonu ;
Magi, Reedik ;
Milani, Lili ;
Almgren, Peter ;
Boutin, Thibaud ;
Debette, Stephanie ;
Ding, Jun ;
Giulianini, Franco ;
Holliday, Elizabeth G. ;
Jackson, Anne U. ;
Li-Gao, Ruifang ;
Lin, Wei-Yu ;
Luan, Jian'an ;
Mangino, Massimo ;
Oldmeadow, Christopher ;
Prins, Bram Peter ;
Qian, Yong ;
Sargurupremraj, Muralidharan ;
Shah, Nabi ;
Surendran, Praveen ;
Theriault, Sebastien ;
Verweij, Niek ;
Willems, Sara M. ;
Zhao, Jing-Hua ;
Amouyel, Philippe ;
Connell, John ;
de Mutsert, Renee .
NATURE GENETICS, 2018, 50 (10) :1412-+
[10]  
Giudice E, 2022, Arxiv, DOI arXiv:2112.09036