Compiler Design for Distributed Quantum Computing

被引:56
作者
Ferrari, Davide [1 ]
Cacciapuoti, Angela Sara [2 ,3 ]
Amoretti, Michele [1 ]
Caleffi, Marcello [2 ,3 ]
机构
[1] Univ Parma, Dept Engn & Architecture, I-43124 Parma, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Future Commun Lab, I-80125 Naples, Italy
[3] Natl Inter Univ Consortium Telecommun, Lab Nazl Comunicaz Multimediali, I-80126 Naples, Italy
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2021年 / 2卷
关键词
Distributed quantum computing; distributed quantum systems; quantum compiling; quantum Internet; quantum networks; TELEPORTATION;
D O I
10.1109/TQE.2021.3053921
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In distributed quantum computing architectures, with the network and communications functionalities provided by the Quantum Internet, remote quantum processing units can communicate and cooperate for executing computational tasks that single, noisy, intermediate-scale quantum devices cannot handle by themselves. To this aim, distributed quantum computing requires a new generation of quantum compilers, for mapping any quantum algorithm to any distributed quantum computing architecture. With this perspective, in this article, we first discuss the main challenges arising with compiler design for distributed quantum computing. Then, we analytically derive an upper bound of the overhead induced by quantum compilation for distributed quantum computing. The derived bound accounts for the overhead induced by the underlying computing architecture as well as the additional overhead induced by the suboptimal quantum compiler-expressly designed in this article to achieve three key features, namely, general-purpose, efficient, and effective. Finally, we validate the analytical results, and we confirm the validity of the compiler design through an extensive performance analysis.
引用
收藏
页数:20
相关论文
共 50 条
[1]  
Kutin SA, 2006, Arxiv, DOI arXiv:quant-ph/0609001
[2]  
Akhremtsev Y., 2017, P M ALGORITHM ENG EX, P28, DOI DOI 10.1137/1.9781611974768.3
[3]   Automated distribution of quantum circuits via hypergraph partitioning [J].
Andres-Martinez, Pablo ;
Heunen, Chris .
PHYSICAL REVIEW A, 2019, 100 (03)
[4]   Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions [J].
Barkoutsos, Panagiotis Kl ;
Gonthier, Jerome F. ;
Sokolov, Igor ;
Moll, Nikolaj ;
Salis, Gian ;
Fuhrer, Andreas ;
Ganzhorn, Marc ;
Egger, Daniel J. ;
Troyer, Matthias ;
Mezzacapo, Antonio ;
Filipp, Stefan ;
Tavernelli, Ivano .
PHYSICAL REVIEW A, 2018, 98 (02)
[5]   Efficient distributed quantum computing [J].
Beals, Robert ;
Brierley, Stephen ;
Gray, Oliver ;
Harrow, Aram W. ;
Kutin, Samuel ;
Linden, Noah ;
Shepherd, Dan ;
Stather, Mark .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2153)
[6]   Characterizing quantum supremacy in near-term devices [J].
Boixo, Sergio ;
Isakov, Sergei, V ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Ding, Nan ;
Jiang, Zhang ;
Bremner, Michael J. ;
Martinis, John M. ;
Neven, Hartmut .
NATURE PHYSICS, 2018, 14 (06) :595-600
[7]  
Botea A., 2018, P INT S COMB SEARCH, V9, P138, DOI 10.1609/socs.v9i1.18463.38
[8]   When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Van Meter, Rodney ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) :3808-3833
[9]   Quantum Internet: Networking Challenges in Distributed Quantum Computing [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Tafuri, Francesco ;
Cataliotti, Francesco Saverio ;
Gherardini, Stefano ;
Bianchi, Giuseppe .
IEEE NETWORK, 2020, 34 (01) :137-143
[10]   The Rise of the Quantum Internet [J].
Caleffi, Marcello ;
Chandra, Daryus ;
Cuomo, Daniele ;
Hassanpour, Shima ;
Cacciapuoti, Angela Sara .
COMPUTER, 2020, 53 (06) :67-72