Synergistic effect of TiO2 nanoparticles and poly (ethylene-co-vinyl acetate) on the morphology and crystallization behavior of polylactic acid

被引:1
作者
El-Taweel, Safaa H. [1 ,2 ]
机构
[1] Cairo Univ, Fac Sci, Chem Dept, Giza 12613, Egypt
[2] German Univ Cairo, Engn & Mat Sci Dept, New Cairo, Egypt
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Polylactic acid (PLA); Poly(ethylene-co-vinyl acetate); With vinyl acetate content 80 (EVA80); DSC; MDSC; Modified Avrami; Effective activation energy; POM; SEM; POLY(LACTIC ACID); NONISOTHERMAL CRYSTALLIZATION; MECHANICAL-PROPERTIES; BLENDS; PLA; KINETICS; COPOLYMER; EVA; NANOCOMPOSITES; MISCIBILITY;
D O I
10.1038/s41598-024-68023-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The impact of adding ethylene vinyl acetate copolymer (EVA 80) and 1 wt% TiO2 nanoparticles on the morphology and crystallization behavior of poly(lactic acid) blends was investigated using DSC, SEM, and POM. Thermal analysis revealed the enhancement of crystallinity of PLA in the presence of TiO2 and higher EVA 80 content in the blend. The PLA and EVA 80 components showed compatibility, as evidenced by the shift of the glass transition temperatures of the PLA phase in the blend to lower values compared to neat PLA. The lower temperature shift of the cold crystallization of the PLA and the formation of the small spherulites of the PLA in the blends indicated that the EVA 80 and TiO2 act as a nucleating agent for crystallization. The non-isothermal crystallization parameters of the composites were evaluated using Avrami's modified model, the MO approach, and Friedman's isoconversional method. The Avrami's modified rate constant (K) and the effective activation energy values significantly increased with the incorporation of EVA 80 and TiO2 nanoparticles. Furthermore, the thermogravimetric analysis (TGA) showed improved thermal stability of PLA by adding EVA 80 and TiO2.
引用
收藏
页数:16
相关论文
共 57 条
  • [31] Synthetic biodegradable polymers as orthopedic devices
    Middleton, JC
    Tipton, AJ
    [J]. BIOMATERIALS, 2000, 21 (23) : 2335 - 2346
  • [32] Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler
    Mofokeng, J. P.
    Luyt, A. S.
    [J]. POLYMER TESTING, 2015, 45 : 93 - 100
  • [33] Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller
    Mofokeng, J. P.
    Luyt, A. S.
    [J]. THERMOCHIMICA ACTA, 2015, 613 : 41 - 53
  • [34] Synthesis of EVA-g-PLA copolymers using transesterification reactions
    Moura, I.
    Nogueira, R.
    Bounor-Legare, Veronique
    Machado, A. V.
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2012, 134 (01) : 103 - 110
  • [35] Tien ND, 2018, CRYSTALLIZATION IN MULTIPHASE POLYMER SYSTEMS, P181, DOI 10.1016/B978-0-12-809453-2.00007-4
  • [36] Nucleated polylactide blend films with nanoprecipitated calcium carbonate and talc
    Phetwarotai, Worasak
    Aht-Ong, Duangdao
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2017, 127 (03) : 2367 - 2381
  • [37] Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor?
    Pillin, Isabelle
    Montrelay, Nicolas
    Grohens, Yves
    [J]. POLYMER, 2006, 47 (13) : 4676 - 4682
  • [38] Plasticization of semicrystalline poly(L-lactide) with poly(propylene glycol)
    Piorkowska, E.
    Kulinski, Z.
    Galeski, A.
    Masirek, R.
    [J]. POLYMER, 2006, 47 (20) : 7178 - 7188
  • [39] Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer
    Pracella, Mariano
    Minhaz-Ul Haque, Md.
    Paci, Massimo
    Alvarez, Vera
    [J]. CARBOHYDRATE POLYMERS, 2016, 137 : 515 - 524
  • [40] Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization
    Rasal, Rahul M.
    Hirt, Douglas E.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 88A (04) : 1079 - 1086