ScanNet plus plus : A High-Fidelity Dataset of 3D Indoor Scenes

被引:28
作者
Yeshwanth, Chandan [1 ]
Liu, Yueh-Cheng [1 ]
Niessner, Matthias [1 ]
Dai, Angela [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV | 2023年
关键词
D O I
10.1109/ICCV51070.2023.00008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present ScanNet++, a large-scale dataset that couples together capture of high-quality and commodity-level geometry and color of indoor scenes. Each scene is captured with a high-end laser scanner at sub-millimeter resolution, along with registered 33-megapixel images from a DSLR camera, and RGB-D streams from an iPhone. Scene reconstructions are further annotated with an open vocabulary of semantics, with label-ambiguous scenarios explicitly annotated for comprehensive semantic understanding. ScanNet++ enables a new real-world benchmark for novel view synthesis, both from high-quality RGB capture, and importantly also from commodity-level images, in addition to a new benchmark for 3D semantic scene understanding that comprehensively encapsulates diverse and ambiguous semantic labeling scenarios. Currently, ScanNet++ contains 460 scenes, 280,000 captured DSLR images, and over 3.7M iPhone RGBD frames.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 53 条
  • [1] Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
    Barron, Jonathan T.
    Mildenhall, Ben
    Verbin, Dor
    Srinivasan, Pratul P.
    Hedman, Peter
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5460 - 5469
  • [2] Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
    Barron, Jonathan T.
    Mildenhall, Ben
    Tancik, Matthew
    Hedman, Peter
    Martin-Brualla, Ricardo
    Srinivasan, Pratul P.
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5835 - 5844
  • [3] Baruch G, 2022, Arxiv, DOI arXiv:2111.08897
  • [4] Chang AE, 2017, Arxiv, DOI arXiv:1709.06158
  • [5] TensoRF: Tensorial Radiance Fields
    Chen, Anpei
    Xu, Zexiang
    Geiger, Andreas
    Yu, Jingyi
    Su, Hao
    [J]. COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 : 333 - 350
  • [6] MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo
    Chen, Anpei
    Xu, Zexiang
    Zhao, Fuqiang
    Zhang, Xiaoshuai
    Xiang, Fanbo
    Yu, Jingyi
    Su, Hao
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14104 - 14113
  • [7] Hierarchical Aggregation for 3D Instance Segmentation
    Chen, Shaoyu
    Fang, Jiemin
    Zhang, Qian
    Liu, Wenyu
    Wang, Xinggang
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15447 - 15456
  • [8] 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
    Choy, Christopher
    Gwak, JunYoung
    Savarese, Silvio
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3070 - 3079
  • [9] ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
    Dai, Angela
    Chang, Angel X.
    Savva, Manolis
    Halber, Maciej
    Funkhouser, Thomas
    Niessner, Matthias
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2432 - 2443
  • [10] Efficient graph-based image segmentation
    Felzenszwalb, PF
    Huttenlocher, DP
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) : 167 - 181