Thermoelastic laminated beam with nonlocal delay

被引:2
作者
Raposo, C. A. [1 ]
Nonato, C. A. [2 ]
Shahrouzi, M. [3 ]
Ferreira, J. [4 ]
机构
[1] Univ Fed Bahia, PhD Program Math, Ave Milton St s-n, BR-40170110 Salvador, BA, Brazil
[2] Univ Estadual Ceara, Ave Dr Silas Munguba 1700, BR-60714903 Fortaleza, CE, Brazil
[3] Jahrom Univ, Dept Math, Jahrom 7413766171, Iran
[4] Fed Fluminense Univ, Dept Exact Sci, s-n, BR-27213145 Volta Redonda, RJ, Brazil
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2024年 / 30卷 / 02期
关键词
Laminated beam; Thermoelasticity; Delay; Asymptotic behavior; BOUNDARY FEEDBACK STABILIZATION; EXPONENTIAL STABILITY; TIMOSHENKO SYSTEM; WAVE-EQUATION; DECAY; TERM;
D O I
10.1007/s40590-024-00633-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This manuscript deals with a thermoelastic laminated Timoshenko beam with a nonlocal integral condition on the transversal displacement and thermal dissipation in the equation that describes the dynamical of rotate angle. Using the Hille-Yosida Theorem, we prove the existence, uniqueness, and regularity of the solution. For the asymptotic behavior, we apply the energy method. Using suitable multipliers, we construct a Lyapunov functional, and then we obtain the exponential stability. To the best of our knowledge, thermoelastic laminated Timoshenko beams with nonlocal time delay conditions have not been considered previously.
引用
收藏
页数:23
相关论文
共 47 条
[1]   Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control [J].
Alabau-Boussouira, Fatiha .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6) :643-669
[2]   Energy decay for Timoshenko systems of memory type [J].
Ammar-Khodja, F ;
Benabdallah, A ;
Rivera, JEM ;
Racke, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) :82-115
[3]  
[Anonymous], 2016, Poincare J. Anal. Appl, DOI DOI 10.46753/PJAA.2016.V03I02.001
[4]   Exponential stability for laminated beams with a frictional damping [J].
Apalara, Tijani A. ;
Raposo, Carlos A. ;
Nonato, Carlos A. S. .
ARCHIV DER MATHEMATIK, 2020, 114 (04) :471-480
[5]   On the Stability of a Thermoelastic Laminated Beam [J].
Apalara, Tijani A. .
ACTA MATHEMATICA SCIENTIA, 2019, 39 (06) :1517-1524
[6]   UNIFORM DECAY IN WEAKLY DISSIPATIVE TIMOSHENKO SYSTEM WITH INTERNAL DISTRIBUTED DELAY FEEDBACKS [J].
Apalara, Tijani A. .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) :815-830
[7]   Nonlocal integral formulations of plasticity and damage:: Survey of progress [J].
Bazant, ZP ;
Jirásek, M .
JOURNAL OF ENGINEERING MECHANICS, 2002, 128 (11) :1119-1149
[8]  
Cannon J., 1963, Q APPL MATH, V21, P155, DOI [10.1090/qam/160437, DOI 10.1090/QAM/160437]
[9]   Easy test for stability of laminated beams with structural damping and boundary feedback controls [J].
Cao, Xue-Guang ;
Liu, Dong-Yi ;
Xu, Gen-Qi .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2007, 13 (03) :313-336
[10]   AN EXAMPLE ON THE EFFECT OF TIME DELAYS IN BOUNDARY FEEDBACK STABILIZATION OF WAVE-EQUATIONS [J].
DATKO, R ;
LAGNESE, J ;
POLIS, MP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (01) :152-156