Reorientation of DABCO (1,4-diazabicyclo[2.2.2]octane) in hydrogen-bonded 1:2 molecular complexes DABCO-2(SBA) with substituted benzoic acids SBA

被引:0
作者
Asaji T. [1 ]
Zhou B. [1 ]
Noguchi M. [1 ]
Fujimori H. [1 ]
机构
[1] Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo
关键词
NMR; Phase transition; Reorientation; Spin-lattice relaxation;
D O I
10.1016/j.molstruc.2022.134506
中图分类号
学科分类号
摘要
The molecular complexes of DABCO-2(SBA) with substituted benzoic acids SBA, which have the hydrogen-bonded trimeric unit, were prepared to investigate the DABCO reorientation in the trimeric unit. By the analysis of the temperature dependence of 1H NMR spin-lattice relaxation time, the correlation time of the DABCO reorientation was determined as a function of the temperature. It is suggested that a change of potential energy of the reorientation is caused with increasing rate of reorientation resulting in a structure change of the trimeric unit to a centrosymmetric structure. The correlation between the activation energy of the DABCO reorientation and the bond nature of the hydrogen bond involved in the trimeric unit is also discussed. © 2022 Elsevier B.V.
引用
收藏
相关论文
共 10 条
[1]  
Yao Z.-S., Yamamoto K., Cai H.-L., Takahashi K., Sato O., Above room temperature organic ferroelectrics: diprotonated 1,4-diazabicyclo[2.2.2]octane shifts between two 2-chlorobenzoates, J. Am. Chem. Soc., 138, pp. 12005-12008, (2016)
[2]  
Yao Z.-S., Sato O., 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(3-chlorobenzoate), Acta Cryst., E70, (2014)
[3]  
Akhmad Aznan A.M., Abdullah Z., Tiekink E.R.T., Crystal structures of 1,4-diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate and 1,4-diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate): the influence of solvent upon the stoichiometry of the formed salt, Acta Cryst., E70, pp. 31-35, (2014)
[4]  
Colin-Molina A., Karothu D.P., Jellen M.J., Toscano R.A., Garcia-Garibay M.A., Naumov P., Rodriguez-Molina B., Thermosalient amphidynamic molecular machines: motion at the molecular and macroscopic scales, Matter, 1, pp. 1033-1046, (2019)
[5]  
Colin-Molina A., Jellen M.J., Rodriguez-Hernandez J., Cifuentes-Quintal M.E., Barroso J., Toscano R.A., Merino G., Rodriguez-Molina B., Hydrogen-bonded crystalline molecular machines with ultrafast rotation and displacive phase transitions, Chem. Eur. J., 26, pp. 11727-11733, (2020)
[6]  
Asaji T., Reorientation of diprotonated DABCO (1,4-Diazabicyclo[2.2.2]octane) cation and proton transfer in organic ferroelectric adduct DABCO-2(2-Chlorobenzoic acid), J. Mol. Struct., 1159, pp. 174-178, (2018)
[7]  
Bloembergen N., Purcell E.M., Pound R.V., Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev., 73, pp. 679-712, (1948)
[8]  
Abragam A., The Principles of Nuclear Magnetism, (1961)
[9]  
Ito Y., Asaji T., Ikeda R., Nakamura D., <sup>1</sup>H NMR and <sup>35</sup>Cl NQR studies on the motion of pyridinium ions in crystalline pyridinium tetrachloro- and tetrabromoaurate(III): (pyH)AuX<sub>4</sub> (X = Cl, Br), Ber. Bunsenges. Phys. Chem., 92, pp. 885-891, (1988)
[10]  
(2020)