MULTIPLE CYLINDRICALLY SYMMETRIC SOLUTIONS OF NONLINEAR MAXWELL EQUATIONS

被引:0
作者
Wen, Yanyun [1 ]
Zhao, Peihao [2 ]
机构
[1] Gansu Normal Coll Nationalities, Math Dept, Hezuo 747000, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Maxwell equations; variational method; dual fountain theorem; cylindrically symmetric solution; GROUND-STATES; EXISTENCE; MODES;
D O I
10.12775/TMNA.2022.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following nonlinear time-harmonic Maxwell equations (0.1) del x (del x E) - omega(2)epsilon(x)E = P (x)|E|Ep-2 + Q(x)|E|Eq-2, where epsilon(x) is the permittivity of the material, x is an element of R-3, 1 < q < p/(p - 1) < 2 < p < 6, P (x), Q(x) is an element of C (R-3, R). Under some special cylindrical symmetric conditions for epsilon(x), P(x) and Q(x), we obtain infinitely many cylindrically symmetric solutions of (0.1) by using variational methods and fountain theorems without tau-upper semi-continuity.
引用
收藏
页码:387 / 407
页数:21
相关论文
共 30 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
[Anonymous], 2001, Analysis (Munich)
[4]  
[Anonymous], 1996, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications
[5]  
Azzollini A, 2006, RIC MAT, V55, P283, DOI 10.1007/s11587-006-0016-8
[6]   Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium [J].
Bartsch, Thomas ;
Mederski, Jaroslaw .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) :4304-4333
[7]   Ground states of a nonlinear curl-curl problem in cylindrically symmetric media [J].
Bartsch, Thomas ;
Dohnal, Tomas ;
Plum, Michael ;
Reichel, Wolfgang .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (05)
[8]   Towards a unified field theory for classical electrodynamics [J].
Benci, V ;
Fortunato, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 173 (03) :379-414
[9]   Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities [J].
Bernini, Federico ;
Bieganowski, Bartosz .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
[10]  
Bieganowski B., 2021, Bull. Pol. Acad. Sci. Math., V69, P37