Achieving ultrahigh hole mobility in hydrogen-terminated diamond via boron nitride modifications

被引:2
作者
Yang, Mingyang [1 ,2 ]
Hu, Youwang [1 ]
Cui, Junfeng [2 ]
Yang, Yingying [3 ]
Qiu, Mengting [2 ]
Lu, Yunxiang [2 ]
Shen, Yi [2 ]
Jia, Zhenglin [2 ]
Nishimura, Kazuhito [2 ]
Tang, Chun [4 ]
Jiang, Nan [2 ]
Yuan, Qilong [2 ]
机构
[1] Cent South Univ, Coll Mech & Elect Engn, State Key Lab Precis Mfg Extreme Serv Performance, Changsha 410083, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Marine Mat & Related Technol, Zhejiang Key Lab Marine Mat & Protect Technol, Ningbo 315201, Peoples R China
[3] Shandong Univ Technol, Sch Phys & Optoelect Engn, Zibo 255000, Peoples R China
[4] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
H; -diamond; Hole mobility; BN modification; High -temperature tolerance; Thermal stability; SURFACE CONDUCTIVITY; TRANSPORT-PROPERTIES; PROSPECTS; DEVICE; FILMS; LAYER;
D O I
10.1016/j.diamond.2024.111007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wide-bandgap semiconductors with high carrier mobility are in great demand for high-power radio-frequency applications. In the past decades, extensive efforts have been devoted to investigating the carrier transport properties of hydrogen-terminated diamond (H-diamond), however, achieving its high hole mobility remains a challenge, thereby limiting the development of diamond electronic devices. Herein, we propose a novel strategy to increase the hole mobility of H-diamond by boron nitride (BN) clusters modifications. Amorphous BN clusters were deposited on high-quality H-diamond surfaces using magnetron sputtering. The modified H-diamond exhibits an ultrahigh hole mobility of 1100 cm2 V-1 s-1, over 10-fold higher than that of H-diamond prior to BN modification. Moreover, the BN-modified H-diamond also exhibits outstanding high-temperature tolerance and excellent thermal stability benefitting from the passivation effect of BN. At 380 K, it still maintains a hole mobility of 385 cm2 V-1 s-1. Even after annealing at 350 K for over 8 h, there are no noticeable variations in its carrier transport properties. The hole mobility enhancing mechanism and the factors influencing carrier transport properties of the BN-modified H-diamond are discussed using first principles calculations analysis. The developed BN-modified H-diamond opens up new possibilities for diamond-based radio-frequency electronic devices operating in challenging temperature environments.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Gamma radiation effects on hydrogen-terminated nanocrystalline diamond bio-transistors
    Kratka, Marie
    Babchenko, Oleg
    Ukraintsev, Egor
    Vachelova, Jana
    Davidkova, Marie
    Vandrovcova, Marta
    Kromka, Alexander
    Rezek, Bohuslav
    [J]. DIAMOND AND RELATED MATERIALS, 2016, 63 : 186 - 191
  • [32] Physical-Based Simulation of DC Characteristics of Hydrogen-Terminated Diamond MOSFETs
    Fu, Yu
    Xu, Yuehang
    Xu, Ruimin
    Zhou, Jianjun
    Kong, Yuechan
    [J]. 2017 IEEE ELECTRICAL DESIGN OF ADVANCED PACKAGING AND SYSTEMS SYMPOSIUM (EDAPS), 2017,
  • [33] Electron emission suppression from hydrogen-terminated n-type diamond
    Takeuchi, D.
    Ogura, M.
    Ri, S. -G.
    Kato, H.
    Okushi, H.
    Yamasaki, S.
    [J]. DIAMOND AND RELATED MATERIALS, 2008, 17 (06) : 986 - 988
  • [34] Hydrogen-terminated diamond MESFETs: operating principles, static and dynamic performance, and reliability
    De Santi, C.
    Pavanello, L.
    Nardo, A.
    Buffolo, M.
    Verona, C.
    Rinati, G. Verona
    Cannata, D.
    Di Pietrantonio, F.
    Meneghesso, G.
    Zanoni, E.
    Meneghini, M.
    [J]. TERAHERTZ, RF, MILLIMETER, AND SUBMILLIMETER-WAVE TECHNOLOGY AND APPLICATIONS XIV, 2021, 11685
  • [35] High hole mobility in boron doped diamond for power device applications
    Volpe, Pierre-Nicolas
    Pernot, Julien
    Muret, Pierre
    Omnes, Franck
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (09)
  • [36] Direct determination of the barrier height of Au ohmic-contact on a hydrogen-terminated diamond (001) surface
    Kono, S.
    Teraji, T.
    Takeuchi, D.
    Ogura, M.
    Kodama, H.
    Sawabe, A.
    [J]. DIAMOND AND RELATED MATERIALS, 2017, 73 : 182 - 189
  • [37] Spin-State Control of Shallow Single NV Centers in Hydrogen-Terminated Diamond
    Kageura, Taisuke
    Sasama, Yosuke
    Teraji, Tokuyuki
    Watanabe, Kenji
    Taniguchi, Takashi
    Yamada, Keisuke
    Kimura, Kosuke
    Onoda, Shinobu
    Takahide, Yamaguchi
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (10) : 13212 - 13218
  • [38] Palladium forms Ohmic contact on hydrogen-terminated diamond down to 4K
    Xing, Kaijian
    Tsai, Alexander
    Rubanov, Sergey
    Creedon, Daniel L.
    Yianni, Steve A.
    Zhang, Lei
    Hao, Wei-Chang
    Zhuang, Jincheng
    McCallum, Jeffrey C.
    Pakes, Christopher I.
    Qi, Dong-Chen
    [J]. APPLIED PHYSICS LETTERS, 2020, 116 (11)
  • [39] Metal-semiconductor field-effect transistors on hydrogen-terminated diamond surfaces
    Tsugawa, K
    Kitatani, K
    Kawarada, H
    [J]. DIAMOND FILMS AND TECHNOLOGY, 1998, 8 (04): : 289 - 297
  • [40] Self-consistent solution of the Schrodinger-Poisson equations for hydrogen-terminated diamond
    Edmonds, M. T.
    Pakes, C. I.
    Ley, L.
    [J]. PHYSICAL REVIEW B, 2010, 81 (08):