Natural language processing for defining linguistic features in schizophrenia: A sample from Turkish speakers

被引:8
作者
Cabuk, Tugce [1 ,2 ]
Sevim, Nurullah [3 ]
Mutlu, Emre [4 ]
Yagcioglu, A. Elif Anil [4 ]
Koc, Aykut [3 ]
Toulopoulou, Timothea [1 ,2 ,5 ,6 ]
机构
[1] Bilkent Univ, Natl Magnet Resonance Res Ctr UMRAM, Dept Psychol, Ankara, Turkiye
[2] Bilkent Univ, Aysel Sabuncu Brain Res Ctr, TR-06800 Ankara, Turkiye
[3] Bilkent Univ, Natl Magnet Resonance Res Ctr UMRAM, Dept Elect & Elect Engn, TR-06800 Ankara, Turkiye
[4] Hacettepe Univ, Fac Med, Dept Psychiat, TR-06230 Ankara, Turkiye
[5] Natl & Kapodistrian Univ Athens, Dept Psychiat 1, Athens, Greece
[6] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA
关键词
Linguistics; Speech; Natural language processing; Schizophrenia; Turkish; Machine learning; Psychosis; FORMAL THOUGHT; TOKEN RATIO; PSYCHOSIS; DISORDER; SPEECH;
D O I
10.1016/j.schres.2024.02.026
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Natural language processing (NLP) provides fast and accurate extraction of features related to the language of schizophrenia. We utilized NLP methods to test the hypothesis that schizophrenia is associated with altered linguistic features in Turkish, a non-Indo-European language, compared to controls. We also explored whether these possible altered linguistic features were language-dependent or -independent. We extracted and compared speech in schizophrenia (SZ, N = 38) and healthy well-matched control (HC, N = 38) participants using NLP. The analysis was conducted in two parts. In the first one, mean sentence length, total completed words, moving average type-token ratio to measure the lexical diversity, and first-person singular pronoun usage were calculated. In the second one, we used parts-of-speech tagging (POS) and Word2Vec in schizophrenia and control. We found that SZ had lower mean sentence length and moving average type-token ratio but higher use of first-person singular pronoun. All these significant results were correlated with the Thought and Language Disorder Scale score. The POS approach demonstrated that SZ used fewer coordinating conjunctions. Our methodology using Word2Vec detected that SZ had higher semantic similarity than HC and K-Means could differentiate between SZ and HC into two distinct groups with high accuracy, 86.84 %. Our findings showed that altered linguistic features in SZ are mostly language-independent. They are promising to describe language patterns in schizophrenia which proposes that NLP measurements may allow for rapid and objective measurements of linguistic features.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 42 条
[1]   Progressive changes in descriptive discourse in First Episode Schizophrenia: a longitudinal computational semantics study [J].
Alonso-Sanchez, Maria Francisca ;
Ford, Sabrina D. ;
MacKinley, Michael ;
Silva, Angelica ;
Limongi, Roberto ;
Palaniyappan, Lena .
SCHIZOPHRENIA, 2022, 8 (01)
[2]   Deconstructing heterogeneity in schizophrenia through language: a semi-automated linguistic analysis and data-driven clustering approach [J].
Bambini, Valentina ;
Frau, Federico ;
Bischetti, Luca ;
Cuoco, Federica ;
Bechi, Margherita ;
Buonocore, Mariachiara ;
Agostoni, Giulia ;
Ferri, Ilaria ;
Sapienza, Jacopo ;
Martini, Francesca ;
Spangaro, Marco ;
Bigai, Giorgia ;
Cocchi, Federica ;
Cavallaro, Roberto ;
Bosia, Marta .
SCHIZOPHRENIA, 2022, 8 (01)
[3]   Automated analysis of free speech predicts psychosis onset in high-risk youths [J].
Bedi G. ;
Carrillo F. ;
Cecchi G.A. ;
Slezak D.F. ;
Sigman M. ;
Mota N.B. ;
Ribeiro S. ;
Javitt D.C. ;
Copelli M. ;
Corcoran C.M. .
npj Schizophrenia, 1 (1)
[4]   Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook [J].
Birnbaum, M. L. ;
Ernala, S. K. ;
Rizvi, A. F. ;
Arenare, E. ;
Van Meter, A. R. ;
De Choudhury, M. ;
Kane, J. M. .
NPJ SCHIZOPHRENIA, 2019, 5 (1)
[5]   Thought and language disorder as a possible endophenotype in schizophrenia: Evidence from patients and their unaffected siblings [J].
Cabuk, Tugce ;
Mutlu, Emre ;
Toulopoulou, Timothea .
SCHIZOPHRENIA RESEARCH, 2023, 254 :78-80
[6]   Classification of schizophrenia using feature-based morphometry [J].
Castellani, U. ;
Rossato, E. ;
Murino, V. ;
Bellani, M. ;
Rambaldelli, G. ;
Perlini, C. ;
Tomelleri, L. ;
Tansella, M. ;
Brambilla, P. .
JOURNAL OF NEURAL TRANSMISSION, 2012, 119 (03) :395-404
[7]   Referential noun phrases distribute differently in Turkish speakers with schizophrenia [J].
Cokal, D. ;
Palominos-Flores, C. ;
Yalincetin, B. ;
Ture-Abaci, O. ;
Bora, E. ;
Hinzen, W. .
SCHIZOPHRENIA RESEARCH, 2023, 259 :104-110
[8]   Language as a biomarker for psychosis: A natural language processing approach [J].
Corcoran, Cheryl M. ;
Mittal, Vijay A. ;
Bearden, Carrie E. ;
Gur, Raquel E. ;
Hitczenko, Kasia ;
Bilgrami, Zarina ;
Savic, Aleksandar ;
Cecchi, Guillermo A. ;
Wolff, Phillip .
SCHIZOPHRENIA RESEARCH, 2020, 226 :158-166
[9]   Prediction of psychosis across protocols and risk cohorts using automated language analysis [J].
Corcoran, Cheryl M. ;
Carrillo, Facundo ;
Fernandez-Slezak, Diego ;
Bedi, Gillinder ;
Klim, Casimir ;
Javitt, Daniel C. ;
Bearden, Carrie E. ;
Cecchi, Guillermo A. .
WORLD PSYCHIATRY, 2018, 17 (01) :67-75
[10]   Assessing coherence through linguistic connectives: Analysis of speech in patients with schizophrenia-spectrum disorders [J].
Corona-Hernandez, H. ;
de Boer, J. N. ;
Brederoo, S. G. ;
Voppel, A. E. ;
Sommer, I. E. C. .
SCHIZOPHRENIA RESEARCH, 2023, 259 :48-58