Space-Time Least-Squares Finite Element Methods for Parabolic Distributed Optimal Control Problems

被引:0
作者
Fuhrer, Thomas [2 ]
Karkulik, Michael [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
关键词
Optimal Control; Parabolic PDE; Space-Time Discretization; ADAPTIVE WAVELET METHODS; DISCRETIZATION;
D O I
10.1515/cmam-2023-0087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method for the numerical approximation of distributed optimal control problems constrained by parabolic partial differential equations. We complement the first-order optimality condition by a recently developed space-time variational formulation of parabolic equations which is coercive in the energy norm, and a Lagrange multiplier. Our final formulation fulfills the Babu & scaron;ka-Brezzi conditions on the continuous as well as discrete level, without restrictions. Consequently, we can allow for final-time desired states, and obtain an a posteriori error estimator which is efficient and reliable up to an additional discretization error of the adjoint problem. Numerical experiments confirm our theoretical findings.
引用
收藏
页码:673 / 691
页数:19
相关论文
共 34 条
[1]   Space-time discretization of the heat equation [J].
Andreev, Roman .
NUMERICAL ALGORITHMS, 2014, 67 (04) :713-731
[2]   Stability of sparse space-time finite element discretizations of linear parabolic evolution equations [J].
Andreev, Roman .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) :242-260
[3]  
[Anonymous], 2022, SIAM JNUMER ANAL, V60, P1607
[4]  
[Anonymous], 2011, SIAM J CONTROL OPTIM, V49, P1150
[5]  
[Anonymous], 2024, IMA J NUMER ANAL, V44, P58
[6]  
Bey J, 2000, NUMER MATH, V85, P1, DOI 10.1007/s002110000108
[7]  
Bochev PB, 2009, APPL MATH SCI, V166, P3, DOI 10.1007/b13382_1
[8]  
Boffi Daniele., 2013, Mixed finite element methods and applications, P44
[9]  
Borzi V., 2012, COMPUT SCI ENG, V8
[10]  
Dautray J.-L., 1992, MATH ANAL NUMERICAL, V5, P8