Optimal control of stochastic differential equations with random impulses and the Hamilton-Jacobi-Bellman equation

被引:11
|
作者
Yin, Qian-Bao [1 ]
Shu, Xiao-Bao [2 ]
Guo, Yu [2 ]
Wang, Zi-Yu [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[2] Hunan Univ, Coll Math, Changsha 410082, Hunan, Peoples R China
关键词
optimal control; random impulses differential equation; stochastic Hamilton-Jacobi-Bellman equation; viscosity solution; PERIODIC-SOLUTIONS;
D O I
10.1002/oca.3139
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we study the optimal control of stochastic differential equations with random impulses. We optimize the performance index and add the influence of random impulses to the performance index with a random compensation function. Using the idea of stochastic analysis and dynamic programming principle, a new Hamilton-Jacobi-Bellman (HJB) equation is obtained, and the existence and uniqueness of its viscosity solution are proved. This article studies stochastic control systems with random impulses, and obtains a new type of Hamilton-Jacobi-Bellman(HJB) equation based on the dynamic programming principle. Compared to previous performance index, we add a compensation function to optimize the performance index. The article provides some results of the corresponding optimal control theory and proves the existence and uniqueness of viscosity solutions for the HJB equation. image
引用
收藏
页码:2113 / 2135
页数:23
相关论文
共 50 条
  • [21] A FEEDBACK DESIGN FOR NUMERICAL SOLUTION TO OPTIMAL CONTROL PROBLEMS BASED ON HAMILTON-JACOBI-BELLMAN EQUATION
    Tao, Zhen-Zhen
    Sun, Bing
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (05): : 3429 - 3447
  • [22] OPTIMAL CONTROL PROBLEMS OF FULLY COUPLED FBSDEs AND VISCOSITY SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS
    Li, Juan
    Wei, Qingmeng
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (03) : 1622 - 1662
  • [23] Convergence of an Upwind Finite-Difference Scheme for Hamilton-Jacobi-Bellman Equation in Optimal Control
    Sun, Bing
    Guo, Bao-Zhu
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (11) : 3012 - 3017
  • [24] Path-dependent Hamilton-Jacobi-Bellman equations related to controlled stochastic functional differential systems
    Ji, Shaolin
    Wang, Lin
    Yang, Shuzhen
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (01) : 109 - 120
  • [25] Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations
    Rao, Z.
    Siconolfi, A.
    Zidani, H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) : 3978 - 4014
  • [26] Hamilton-Jacobi-Bellman Approach for Optimal Control Problems of Sweeping Processes
    Hermosilla, Cristopher
    Palladino, Michele
    Vilches, Emilio
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02)
  • [27] Fractional Order Version of the Hamilton-Jacobi-Bellman Equation
    Razminia, Abolhassan
    Asadizadehshiraz, Mehdi
    Torres, Delfim F. M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (01):
  • [28] Symmetries and analytical solutions of the Hamilton-Jacobi-Bellman equation for a class of optimal controlproblems
    Rodrigues, Luis
    Henrion, Didier
    Cantwell, Brian J.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2016, 37 (04) : 749 - 764
  • [29] LOWER SEMICONTINUOUS SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS
    FRANKOWSKA, H
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (01) : 257 - 272
  • [30] Equivalent Extensions of Hamilton-Jacobi-Bellman Equations on Hypersurfaces
    Martin, Lindsay
    Tsai, Yen-Hsi Richard
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (03)