Optimal control of stochastic differential equations with random impulses and the Hamilton-Jacobi-Bellman equation

被引:11
|
作者
Yin, Qian-Bao [1 ]
Shu, Xiao-Bao [2 ]
Guo, Yu [2 ]
Wang, Zi-Yu [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[2] Hunan Univ, Coll Math, Changsha 410082, Hunan, Peoples R China
来源
关键词
optimal control; random impulses differential equation; stochastic Hamilton-Jacobi-Bellman equation; viscosity solution; PERIODIC-SOLUTIONS;
D O I
10.1002/oca.3139
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we study the optimal control of stochastic differential equations with random impulses. We optimize the performance index and add the influence of random impulses to the performance index with a random compensation function. Using the idea of stochastic analysis and dynamic programming principle, a new Hamilton-Jacobi-Bellman (HJB) equation is obtained, and the existence and uniqueness of its viscosity solution are proved. This article studies stochastic control systems with random impulses, and obtains a new type of Hamilton-Jacobi-Bellman(HJB) equation based on the dynamic programming principle. Compared to previous performance index, we add a compensation function to optimize the performance index. The article provides some results of the corresponding optimal control theory and proves the existence and uniqueness of viscosity solutions for the HJB equation. image
引用
收藏
页码:2113 / 2135
页数:23
相关论文
共 50 条
  • [1] Stochastic optimal control with random coefficients and associated stochastic Hamilton-Jacobi-Bellman equations
    Moon, Jun
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [2] OPTIMAL STOCHASTIC-CONTROL AND HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (10): : 567 - 570
  • [3] Hamilton-Jacobi-Bellman equations and optimal control
    Dolcetta, IC
    VARIATIONAL CALCULUS, OPTIMAL CONTROL AND APPLICATIONS, 1998, 124 : 121 - 132
  • [4] Optimal Controls of Stochastic Differential Equations with Jumps and Random Coefficients: Stochastic Hamilton-Jacobi-Bellman Equations with Jumps
    Meng, Qingxin
    Dong, Yuchao
    Shen, Yang
    Tang, Shanjian
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (01):
  • [5] HAMILTON-JACOBI-BELLMAN EQUATIONS FOR THE OPTIMAL CONTROL OF A STATE EQUATION WITH MEMORY
    Carlier, Guillaume
    Tahraoui, Rabah
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03): : 744 - 763
  • [6] Hamilton-Jacobi-Bellman equation based on fractional random impulses system
    Guo, Yu
    Dai, Zhenyi
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (04): : 1716 - 1735
  • [7] STOCHASTIC HAMILTON-JACOBI-BELLMAN EQUATIONS
    PENG, SG
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (02) : 284 - 304
  • [8] A feedback optimal control by Hamilton-Jacobi-Bellman equation
    Zhu, Jinghao
    EUROPEAN JOURNAL OF CONTROL, 2017, 37 : 70 - 74
  • [9] Hamilton-Jacobi-Bellman equations for quantum optimal control
    Gough, J.
    Belavkin, V. A.
    Smolyanov, O. G.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION 2006, 2006, : 293 - 297
  • [10] Local solutions to the Hamilton-Jacobi-Bellman equation in stochastic problems of optimal control
    A. S. Bratus’
    D. V. Iourtchenko
    J. -L. Menaldi
    Doklady Mathematics, 2006, 74 : 610 - 613