MRL-Seg: Overcoming Imbalance in Medical Image Segmentation With Multi-Step Reinforcement Learning

被引:9
作者
Yang, Feiyang [1 ,2 ]
Li, Xiongfei [1 ,2 ]
Duan, Haoran [3 ]
Xu, Feilong [1 ,2 ]
Huang, Yawen [4 ]
Zhang, Xiaoli [1 ,2 ]
Long, Yang [3 ]
Zheng, Yefeng [4 ]
机构
[1] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[3] Univ Durham, Dept Comp Sci, Durham DH1 3LE, England
[4] Tencent Jarvis Lab, Shenzhen 518040, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Transformers; Reinforcement learning; Lesions; Medical diagnostic imaging; Task analysis; Training; Deep learning; imbalanced medical image segmentation; radiomics; reinforcement learning; NETWORK; ATTENTION; NET;
D O I
10.1109/JBHI.2023.3336726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image segmentation is a critical task for clinical diagnosis and research. However, dealing with highly imbalanced data remains a significant challenge in this domain, where the region of interest (ROI) may exhibit substantial variations across different slices. This presents a significant hurdle to medical image segmentation, as conventional segmentation methods may either overlook the minority class or overly emphasize the majority class, ultimately leading to a decrease in the overall generalization ability of the segmentation results. To overcome this, we propose a novel approach based on multi-step reinforcement learning, which integrates prior knowledge of medical images and pixel-wise segmentation difficulty into the reward function. Our method treats each pixel as an individual agent, utilizing diverse actions to evaluate its relevance for segmentation. To validate the effectiveness of our approach, we conduct experiments on four imbalanced medical datasets, and the results show that our approach surpasses other state-of-the-art methods in highly imbalanced scenarios. These findings hold substantial implications for clinical diagnosis and research.
引用
收藏
页码:858 / 869
页数:12
相关论文
共 41 条
[1]   Dataset of breast ultrasound images [J].
Al-Dhabyani, Walid ;
Gomaa, Mohammed ;
Khaled, Hussien ;
Fahmy, Aly .
DATA IN BRIEF, 2020, 28
[2]   A Multi-Scale Context Aware Attention Model for Medical Image Segmentation [J].
Alam, Md. Shariful ;
Wang, Dadong ;
Liao, Qiyu ;
Sowmya, Arcot .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (08) :3731-3739
[3]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[4]  
Chen Jieneng, 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[5]   TD-Net: A Hybrid End-to-End Network for Automatic Liver Tumor Segmentation From CT Images [J].
Di, Shuanhu ;
Zhao, Yu-Qian ;
Liao, Miao ;
Zhang, Fan ;
Li, Xiong .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (03) :1163-1172
[6]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, 10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[7]  
Furuta R, 2019, AAAI CONF ARTIF INTE, P3598
[8]   MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection [J].
Guo, Zhitao ;
Zhao, Linlin ;
Yuan, Jinli ;
Yu, Hengyong .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (06) :2547-2558
[9]   The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge [J].
Heller, Nicholas ;
Isensee, Fabian ;
Maier-Hein, Klaus H. ;
Hou, Xiaoshuai ;
Xie, Chunmei ;
Li, Fengyi ;
Nan, Yang ;
Mu, Guangrui ;
Lin, Zhiyong ;
Han, Miofei ;
Yao, Guang ;
Gao, Yaozong ;
Zhang, Yao ;
Wang, Yixin ;
Hou, Feng ;
Yang, Jiawei ;
Xiong, Guangwei ;
Tian, Jiang ;
Zhong, Cheng ;
Ma, Jun ;
Rickman, Jack ;
Dean, Joshua ;
Stai, Bethany ;
Tejpaul, Resha ;
Oestreich, Makinna ;
Blake, Paul ;
Kaluzniak, Heather ;
Raza, Shaneabbas ;
Rosenberg, Joel ;
Moore, Keenan ;
Walczak, Edward ;
Rengel, Zachary ;
Edgerton, Zach ;
Vasdev, Ranveer ;
Peterson, Matthew ;
McSweeney, Sean ;
Peterson, Sarah ;
Kalapara, Arveen ;
Sathianathen, Niranjan ;
Papanikolopoulos, Nikolaos ;
Weight, Christopher .
MEDICAL IMAGE ANALYSIS, 2021, 67
[10]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+