Ultrafast electron transfer at the In2O3/Nb2O5 S-scheme interface for CO2 photoreduction

被引:253
作者
Deng, Xianyu [1 ]
Zhang, Jianjun [1 ]
Qi, Kezhen [2 ]
Liang, Guijie [3 ]
Xu, Feiyan [1 ]
Yu, Jiaguo [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Lab Solar Fuel, Wuhan 430078, Peoples R China
[2] Dali Univ, Coll Pharm, Dali 671003, Peoples R China
[3] Hubei Univ Arts & Sci, Hubei Key Lab Low Dimens Optoelect Mat & Devices, Xiangyang 441053, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
HETEROJUNCTION; PERFORMANCE; NB2O5; LAYER;
D O I
10.1038/s41467-024-49004-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Constructing S-scheme heterojunctions proves proficient in achieving the spatial separation of potent photogenerated charge carriers for their participation in photoreactions. Nonetheless, the restricted contact areas between two phases within S-scheme heterostructures lead to inefficient interfacial charge transport, resulting in low photocatalytic efficiency from a kinetic perspective. Here, In2O3/Nb2O5 S-scheme heterojunctions are fabricated through a straightforward one-step electrospinning technique, enabling intimate contact between the two phases and thereby fostering ultrafast interfacial electron transfer (<10 ps), as analyzed via femtosecond transient absorption spectroscopy. As a result, powerful photo-electrons and holes accumulate in the Nb2O5 conduction band and In2O3 valence band, respectively, exhibiting extended long lifetimes and facilitating their involvement in subsequent photoreactions. Combined with the efficient chemisorption and activation of stable CO2 on the Nb2O5, the resulting In2O3/Nb2O5 hybrid nanofibers demonstrate improved photocatalytic performance for CO2 conversion.
引用
收藏
页数:12
相关论文
共 63 条
[1]   On factors of ions in seawater for CO2 reduction [J].
Bai, Shengjie ;
Song, Mengmeng ;
Ma, Tengfei ;
Wang, Feng ;
Liu, Ya ;
Guo, Liejin .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 323
[2]   H2-production and electron-transfer mechanism of a noble-metal-free WO3@ZnIn2S4 S-scheme heterojunction photocatalyst [J].
Cao, Shuang ;
Yu, Jiaguo ;
Wageh, Swelm ;
Al-Ghamdi, Ahmed A. ;
Mousavi, Mitra ;
Ghasemi, Jahan B. ;
Xu, Feiyan .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (33) :17174-17184
[3]   The Development of Cocatalysts for Photoelectrochemical CO2 Reduction [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Yang, Piaoping ;
Zhang, Gong ;
Gong, Jinlong .
ADVANCED MATERIALS, 2019, 31 (31)
[4]   CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Gong, Jinlong .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2177-2196
[5]   Verifying the Charge-Transfer Mechanism in S-Scheme Heterojunctions Using Femtosecond Transient Absorption Spectroscopy [J].
Cheng, Chang ;
Zhang, Jianjun ;
Zhu, Bicheng ;
Liang, Guijie ;
Zhang, Liuyang ;
Yu, Jiaguo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (08)
[6]   Infrared analysis of catalytic CO2 reduction in hydrogenated germanium [J].
de Vrijer, Thierry ;
Smets, Arno H. M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (17) :10241-10248
[7]   Enhanced Solar Fuel Production over In2O3@Co2VO4 Hierarchical Nanofibers with S-Scheme Charge Separation Mechanism [J].
Deng, Xianyu ;
Wen, Zhenhai ;
Li, Xuanhua ;
Macyk, Wojciech ;
Yu, Jiaguo ;
Xu, Feiyan .
SMALL, 2024, 20 (08)
[8]   Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light [J].
Feng, Chang ;
Chen, Zhuoyuan ;
Hou, Jian ;
Li, Jiarun ;
Li, Xiangbo ;
Xu, Likun ;
Sun, Mingxian ;
Zeng, Rongchang .
CHEMICAL ENGINEERING JOURNAL, 2018, 345 :404-413
[9]  
Gao RQ, 2022, CHIN J STRUCT CHEM, V41, P2206031, DOI 10.14102/j.cnki.0254-5861.2022-0096
[10]   Artificial Photosynthesis over Tubular In2O3/ZnO Heterojunctions Assisted by Efficient CO2 Activation and S-Scheme Charge Separation [J].
Han, Gaowei ;
Liu, Chengyuan ;
Pan, Yang ;
Macyk, Wojciech ;
Wageh, Swelm ;
Al-Ghamdi, Ahmed A. ;
Xu, Feiyan .
ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (01)