Melanoma extracellular vesicles inhibit tumor growth and metastasis by stimulating CD8 T cells

被引:2
作者
Dan, Yuxi [1 ,2 ]
Ma, Jing [1 ,2 ]
Long, Yuqing [1 ,2 ]
Jiang, Yao [1 ,2 ]
Fang, Liaoqiong [1 ,3 ]
Bai, Jin [1 ,2 ]
机构
[1] Chongqing Med Univ, Coll Biomed Engn, State Key Lab Ultrasound Med & Engn, Chongqing 400016, Peoples R China
[2] Chongqing Med Univ, Chongqing Key Lab Biomed Engn, Chongqing 400016, Peoples R China
[3] Natl Engn Res Ctr Ultrasound Med, Chongqing 401121, Peoples R China
关键词
Extracellular vesicles; Melanoma; CD8 T cells; Dendritic cells; DENDRITIC CELLS; VACCINE;
D O I
10.1016/j.molimm.2024.03.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tumor cell-derived extracellular vesicles (EVs) play a crucial role in mediating immune responses by carrying and presenting tumor antigens. Here, we suggested that melanoma EVs triggered cytotoxic CD8 T cell-mediated inhibition of tumor growth and metastasis. Our results indicated that immunization of mice with melanoma EVs inhibited melanoma growth and metastasis while increasing CD8 T cells and serum interferon gamma (IFN-gamma) in vivo. In vitro experiments showed that melanoma EV stimulates dendritic cells (DCs) maturation, and mature dendritic cells induce T lymphocyte activation. Thus, tumor cell-derived EVs can generate anti-tumor immunity in a prophylactic setting and may be potential candidates for cell-free tumor vaccines.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 47 条
[1]   Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises [J].
Anestopoulos, I. ;
Kyriakou, S. ;
Tragkola, V. ;
Paraskevaidis, I. ;
Tzika, E. ;
Mitsiogianni, M. ;
Deligiorgi, M. V. ;
Petrakis, G. ;
Trafalis, D. T. ;
Botaitis, S. ;
Giatromanolaki, A. ;
Koukourakis, M. I. ;
Franco, R. ;
Pappa, A. ;
Panayiotidis, M. I. .
PHARMACOLOGY & THERAPEUTICS, 2022, 240
[2]   Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis [J].
Becker, Annette ;
Thakur, Basant Kumar ;
Weiss, Joshua Mitchell ;
Kim, Han Sang ;
Peinado, Hector ;
Lyden, David .
CANCER CELL, 2016, 30 (06) :836-848
[3]   CD4+ T cell help in cancer immunology and immunotherapy [J].
Borst, Jannie ;
Ahrends, Tomasz ;
Babala, Nikolina ;
Melief, Cornelis J. M. ;
Kastenmueller, Wolfgang .
NATURE REVIEWS IMMUNOLOGY, 2018, 18 (10) :635-647
[4]   Immature, semi-mature, and fully mature dendritic cells: toward a DC-cancer cells interface that augments anticancer immunity [J].
Dudek, Aleksandra M. ;
Martin, Shaun ;
Garg, Abhishek D. ;
Agostinis, Patrizia .
FRONTIERS IN IMMUNOLOGY, 2013, 4
[5]   Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy [J].
Gao, Shan ;
Yang, Dongjuan ;
Fang, Yan ;
Lin, Xiaojie ;
Jin, Xuechao ;
Wang, Qi ;
Wang, Xiyan ;
Ke, Liyuan ;
Shi, Kai .
THERANOSTICS, 2019, 9 (01) :126-151
[6]   Extracellular Vesicles and Their Current Role in Cancer Immunotherapy [J].
Giacobino, Carla ;
Canta, Marta ;
Fornaguera, Cristina ;
Borros, Salvador ;
Cauda, Valentina .
CANCERS, 2021, 13 (09)
[7]   Extracellular vesicles as next generation immunotherapeutics [J].
Greening, David W. ;
Xu, Rong ;
Ale, Anukreity ;
Hagemeyer, Christoph E. ;
Chen, Weisan .
SEMINARS IN CANCER BIOLOGY, 2023, 90 :73-100
[8]   Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6 [J].
Guo, Danfeng ;
Chen, Yinghu ;
Wang, Shoujie ;
Yu, Lei ;
Shen, Yingying ;
Zhong, Haijun ;
Yang, Yunshan .
IMMUNOLOGY, 2018, 154 (01) :132-143
[9]   Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations [J].
Hamdy, Samar ;
Haddadi, Azita ;
Hung, Ryan W. ;
Lavasanifar, Afsaneh .
ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (10-11) :943-955
[10]   Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect [J].
Han, Jiansong ;
Gu, Xinquan ;
Li, Yang ;
Wu, Qiaoli .
BIOMEDICINE & PHARMACOTHERAPY, 2020, 129