Exponential Stabilization of a Semi Linear Third Order in Time Equation with Memory

被引:1
作者
da Silva, M. Barbosa [1 ]
Cavalcanti, V. N. Domingos [1 ]
Tavares, E. H. Gomes [2 ]
Tavares, T. Saito [2 ]
机构
[1] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, PR, Brazil
[2] Fed Univ Para, Fac Math, BR-66075110 Belem, PA, Brazil
关键词
Third order in time equation; Memory term; Past history; Exponential stability; GIBSON-THOMPSON EQUATION; GENERAL DECAY; ATTRACTORS;
D O I
10.1007/s00245-024-10144-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with a third order in time equation in the presence of viscoelastic effects given by the memory term and with a semi linear source term, posed on a bounded domain Omega subset of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}<^>3 $$\end{document}. Considering three different types of memory in the past history framework, we prove the well-posedness of its solutions as well as the exponential stability of the energy functional. Relaxing some hypotheses on the memory kernel, we improve and extend the results established in the existing literature.
引用
收藏
页数:25
相关论文
共 49 条
[1]   Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach [J].
Alves, M. O. ;
Caixeta, A. H. ;
Jorge Silva, M. A. ;
Rodrigues, J. H. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04)
[2]  
[Anonymous], 2012, Palest. J. Math
[3]  
[Anonymous], 1977, Theoretical Foundations of Nonlinear Acoustics
[4]   SOLVABILITY OF THE MOORE-GIBSON-THOMPSON EQUATION WITH VISCOELASTIC MEMORY TYPE II AND INTEGRAL CONDITION [J].
Boulaaras, Salah ;
Choucha, Abdelbaki ;
Ouchenane, Djamel ;
Abdalla, Mohamed ;
Vazquez, Aldo Jonathan Munoz .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06) :1216-1241
[5]   General Decay of the Moore-Gibson-Thompson Equation with Viscoelastic Memory of Type II [J].
Boulaaras, Salah ;
Choucha, Abdelbaki ;
Scapellato, Andrea .
JOURNAL OF FUNCTION SPACES, 2022, 2022
[6]   A General Stability Result for a Viscoelastic Moore-Gibson-Thompson Equation in the Whole Space [J].
Bounadja, Hizia ;
Messaoudi, Salim .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1) :S509-S521
[7]   DECAY RATES FOR THE MOORE-GIBSON-THOMPSON EQUATION WITH MEMORY [J].
Bounadja, Hizia ;
Houari, Belkacem Said .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03) :431-460
[8]   The Cauchy-Dirichlet problem for the Moore-Gibson-Thompson equation [J].
Bucci, Francesca ;
Eller, Matthias .
COMPTES RENDUS MATHEMATIQUE, 2021, 359 (07) :881-903
[9]   On the regularity of solutions to the Moore-Gibson-Thompson equation: a perspective via wave equations with memory [J].
Bucci, Francesca ;
Pandolfi, Luciano .
JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) :837-867
[10]   Feedback control of the acoustic pressure in ultrasonic wave propagation [J].
Bucci, Francesca ;
Lasiecka, Irena .
OPTIMIZATION, 2019, 68 (10) :1811-1854