A review of cell-type specific circuit mechanisms underlying epilepsy

被引:3
作者
Zhao, Peilin [1 ,2 ]
Ding, Xiaomi [1 ]
Li, Lini [1 ]
Jiang, Guohui [1 ,3 ]
机构
[1] North Sichuan Med Coll, Affiliated Hosp, Inst Neurol Dis, Clin Sch Med, Nanchong 637000, Sichuan, Peoples R China
[2] North Sichuan Med Coll, Affiliated Hosp, Nanomed Innovat Res & Dev Transformat Inst, Clin Sch Med, Nanchong 637000, Sichuan, Peoples R China
[3] North Sichuan Med Coll, Affiliated Hosp, Clin Sch Med, Dept Neurol, Nanchong 637000, Sichuan, Peoples R China
来源
ACTA EPILEPTOLOGICA | 2024年 / 6卷 / 01期
基金
中国国家自然科学基金;
关键词
Epilepsy; Circuit mechanisms; Cell-type specific; Neuromodulatory; OPTOGENETIC ACTIVATION; GABAERGIC NEURONS; LOCUS-COERULEUS; INTERNEURONS; SEIZURES; DOPAMINE; MODEL; FOCUS; NEUROTRANSMITTERS; PEDUNCULOPONTINE;
D O I
10.1186/s42494-024-00159-2
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Epilepsy is a prevalent neurological disorder, yet its underlying mechanisms remain incompletely understood. Accumulated studies have indicated that epilepsy is characterized by abnormal neural circuits. Understanding the circuit mechanisms is crucial for comprehending the pathogenesis of epilepsy. With advances in tracing and modulating tools for neural circuits, some epileptic circuits have been uncovered. This comprehensive review focuses on the circuit mechanisms underlying epilepsy in various neuronal subtypes, elucidating their distinct roles. Epileptic seizures are primarily characterized by the hyperactivity of glutamatergic neurons and inhibition of GABAergic neurons. However, specific activated GABAergic neurons and suppressed glutamatergic neurons exacerbate epilepsy through preferentially regulating the activity of GABAergic neurons within epileptic circuits. Distinct subtypes of GABAergic neurons contribute differently to epileptic activities, potentially due to their diverse connection patterns. Moreover, identical GABAergic neurons may assume distinct roles in different stages of epilepsy. Both GABAergic neurons and glutamatergic neurons with long-range projecting fibers innervate multiple nuclei; nevertheless, not all of these circuits contribute to epileptic activities. Epileptic circuits originating from the same nuclei may display diverse contributions to epileptic activities, and certain glutamatergic circuits from the same nuclei may even exert opposing effects on epilepsy. Neuromodulatory neurons, including cholinergic, serotonergic, dopaminergic, and noradrenergic neurons, are also implicated in epilepsy, although the underlying circuit mechanisms remain poorly understood. These studies suggest that epileptic nuclei establish intricate connections through cell-type-specific circuits and play pivotal roles in epilepsy. However, there are still limitations in knowledge and methods, and further understanding of epileptic circuits is crucial, particularly in the context of refractory epilepsy.
引用
收藏
页数:12
相关论文
共 103 条
[1]   Mechanisms of decreased cholinergic arousal in focal seizures: In vivo whole-cell recordings from the pedunculopontine tegmental nucleus [J].
Andrews, John P. ;
Yue, Zongwei ;
Ryu, Jun Hwan ;
Neske, Garrett ;
McCormick, David A. ;
Blumenfeld, Hal .
EXPERIMENTAL NEUROLOGY, 2019, 314 :74-81
[2]   The antiepileptic and ictogenic effects of optogenetic neurostimulation of PV-expressing interneurons [J].
Assaf, Fadi ;
Schiller, Yitzhak .
JOURNAL OF NEUROPHYSIOLOGY, 2016, 116 (04) :1694-1704
[3]   Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping [J].
Beier, Kevin T. ;
Steinberg, Elizabeth E. ;
DeLoach, Katherine E. ;
Xie, Stanley ;
Miyamichi, Kazunari ;
Schwarz, Lindsay ;
Gao, Xiaojing J. ;
Kremer, Eric J. ;
Malenka, Robert C. ;
Luo, Liqun .
CELL, 2015, 162 (03) :622-634
[4]   Optogenetics in epilepsy [J].
Bentley, J. Nicole ;
Chestek, Cindy ;
Stacey, William C. ;
Patil, Parag G. .
NEUROSURGICAL FOCUS, 2013, 34 (06)
[5]   How Is the Norepinephrine System Involved in the Antiepileptic Effects of Vagus Nerve Stimulation? [J].
Berger, Alexandre ;
Vespa, Simone ;
Dricot, Laurence ;
Dumoulin, Manon ;
Iachim, Evelina ;
Doguet, Pascal ;
Vandewalle, Gilles ;
El Tahry, Riem .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[6]   Parkinson's disease [J].
Bloem, Bastiaan R. ;
Okun, Michael S. ;
Klein, Christine .
LANCET, 2021, 397 (10291) :2284-2303
[7]   Chemogenetic Recruitment of Specific Interneurons Suppresses Seizure Activity [J].
Calin, Alexandru ;
Stancu, Mihai ;
Zagrean, Ana-Maria ;
Jefferys, John G. R. ;
Ilie, Andrei S. ;
Akerman, Colin J. .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2018, 12
[8]   Neuroligin 2 regulates absence seizures and behavioral arrests through GABAergic transmission within the thalamocortical circuitry [J].
Cao, Feng ;
Liu, Jackie J. ;
Zhou, Susan ;
Cortez, Miguel A. ;
Snead, O. Carter ;
Han, Jing ;
Jia, Zhengping .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis [J].
Cavarec, Fanny ;
Krauss, Philipp ;
Witkowski, Tiffany ;
Broisat, Alexis ;
Ghezzi, Catherine ;
De Gois, Stephanie ;
Giros, Bruno ;
Depaulis, Antoine ;
Deransart, Colin .
EPILEPSIA, 2019, 60 (10) :2128-2140
[10]   Mechanisms of disease - Epilepsy [J].
Chang, BS ;
Lowenstein, DH .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 349 (13) :1257-1266