Combinatorial upper bounds for the smallest eigenvalue of a graph

被引:0
作者
Esmailpour, Aryan [1 ]
Madani, Sara Saeedi [1 ,2 ]
Kiani, Dariush [1 ]
机构
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Graph eigenvalues; Average degree; Independence number; Chromatic number; LEAST EIGENVALUE; CUT; APPROXIMATION; SUBGRAPHS;
D O I
10.1007/s00013-024-01998-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph, and let lambda(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (G)$$\end{document} denote the smallest eigenvalue of G. First, we provide an upper bound for lambda(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (G)$$\end{document} based on induced bipartite subgraphs of G. Consequently, we extract two other upper bounds, one relying on the average degrees of induced bipartite subgraphs and a more explicit one in terms of the chromatic number and the independence number of G. In particular, motivated by our bounds, we introduce two graph invariants that are of interest on their own. Finally, special attention goes to the investigation of the sharpness of our bounds in various classes of graphs as well as the comparison with an existing well-known upper bound.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 19 条
[1]   Bipartite subgraphs and the smallest eigenvalue [J].
Alon, N ;
Sudakov, B .
COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (01) :1-12
[2]   Graphs for which the least eigenvalue is minimal, II [J].
Bell, Francis K. ;
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) :2168-2179
[3]   Graphs for which the least eigenvalue is minimal, I [J].
Bell, Francis K. ;
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) :234-241
[4]   Graphs with maximum degree Δ ≥ 17 and maximum average degree less than 3 are list 2-distance (Δ+2)-colorable [J].
Bonamy, Marthe ;
Leveque, Benjamin ;
Pinlou, Alexandre .
DISCRETE MATHEMATICS, 2014, 317 :19-32
[5]  
Brouwer A.E., 2011, Spectra of Graphs, DOI DOI 10.1007/978-1-4614-1939-6
[6]   The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters [J].
Brouwer, Andries E. ;
Cioaba, Sebastian M. ;
Ihringer, Ferdinand ;
McGinnis, Matt .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 133 :88-121
[7]  
Cioaba SM, 2007, ELECTRON J COMB, V14
[8]   SOME OBSERVATIONS ON THE SMALLEST ADJACENCY EIGENVALUE OF A GRAPH [J].
Cioaba, Sebastian M. ;
Elzinga, Randall J. ;
Gregory, David A. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) :467-493
[9]  
Cvetkovic D., 2010, An Introduction to the Theory of Graph Spectra, DOI DOI 10.1017/CBO9780511801518
[10]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145