Optical Soliton solutions for stochastic Davey-Stewartson equation under the effect of noise

被引:2
|
作者
Iqbal, Muhammad Sajid [1 ,2 ]
Inc, Mustafa [3 ]
机构
[1] Liverpool John Moores Univ, Sch Fdn Studies & Math, Oryx Universal Coll, Doha 12253, Qatar
[2] NUST, Mil Coll Signals, Dept Humanities & Basic Sci, Islamabad, Pakistan
[3] Firat Univ, Dept Math, TR-23119 Elazig, Turkiye
关键词
Optical soliton solutions; SDS model; Sardar subequation method; Brownian motion; WAVE SOLUTIONS;
D O I
10.1007/s11082-024-06453-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this manuscript, we investigates the stochastic Davey-Stewartson equation under the influence of noise in It o <^> \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{o}}$$\end{document} sense. This equations is a two-dimensional integrable equations, are higher-dimensional variations of the nonlinear Schr & ouml;dinger equation. Plasma physics, nonlinear optics, hydrodynamics, and other fields have made use of the solutions to the stochastic Davey-Stewartson equations. The Sardar subequation method is used that will gives us the the stochastic optical soliton solutions in the form of dark, bright, combine and periodic waves. These exact optical soliton solutions are helpful in understanding a variety of fascinating physical phenomena because of the importance of the Davey- Stewartson equations in the theory of turbulence for plasma waves or in optical fibers. Additionally, we use Mathematica tools to plot our solutions and exhibit a series of three-dimensional, two-dimensional and their corresponding contour graphs to show how the noise affects the exact solutions of the stochastic Davey-Stewartson equation. We show how the stochastic Davey-Stewartson solutions are stabilised at around zero by the multiplicative Brownian motion.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Optical exact soliton solutions of nonlinear optical transmission equation using two explicit methods
    Sadaf, Maasoomah
    Akram, Ghazala
    Arshed, Saima
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (04)
  • [32] Exact solutions and optical soliton solutions for the nonlinear Schrodinger equation with fourth-order dispersion and cubic-quintic nonlinearity
    Zayed, Elsayed M. E.
    Al-Nowehy, Abdul-Ghani
    RICERCHE DI MATEMATICA, 2017, 66 (02) : 531 - 552
  • [33] New optical soliton solutions of fractional perturbed nonlinear Schrodinger equation in nanofibers
    Ray, S. Saha
    Das, N.
    MODERN PHYSICS LETTERS B, 2022, 36 (02):
  • [34] New optical soliton solutions and dynamic behaviours analysis of the Sasa-Satsuma equation in optical fibers
    Yu, Hong-feng
    Wu, Wei-nan
    Yang, Bing-nuo
    Guo, Peng
    JOURNAL OF MODERN OPTICS, 2024, 71 (09) : 310 - 320
  • [35] On optical soliton solutions of new Hamiltonian amplitude equation via Jacobi elliptic functions
    Zafar, Asim
    Raheel, M.
    Ali, Khalid K.
    Razzaq, Waseem
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (08)
  • [36] On study of modulation instability and optical soliton solutions: the chiral nonlinear Schrodinger dynamical equation
    Rehman, S. U.
    Seadawy, Aly R.
    Younis, M.
    Rizvi, S. T. R.
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (08)
  • [37] Optical soliton solutions to Fokas-lenells equation using some different methods
    Biswas, Anjan
    Yildirim, Yakup
    Yasar, Emrullah
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2018, 173 : 21 - 31
  • [38] Optical soliton solutions of fractional Sasa-Satsuma equation with beta and conformable derivatives
    Akram, Ghazala
    Sadaf, Maasoomah
    Arshed, Saima
    Sabir, Habiba
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (11)
  • [39] Effect of cubic nonlinearity on soliton solutions of the Benjamin-Bona-Mahony equation
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (04) : 477 - 485
  • [40] Optical soliton solutions of the Ginzburg-Landau equation with conformable derivative and Kerr law nonlinearity
    Ghanbari, Behzad
    Gomez-Aguilar, J. F.
    REVISTA MEXICANA DE FISICA, 2019, 65 (01) : 73 - 81