Damped Euler system with attractive Riesz interaction forces

被引:0
作者
Choi, Young-Pil [1 ]
Jung, Jinwook [2 ,3 ]
Lee, Yoonjung [1 ]
机构
[1] Yonsei Univ, Dept Math, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Hanyang Univ, Dept Math, 222 Wangsimni Ro, Seoul 04763, South Korea
[3] Hanyang Univ, Res Inst Nat Sci, 222 Wangsimni Ro, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Euler-Riesz system; Attractive Riesz interactions; Global existence; Large-time behavior; VLASOV-MANEV EQUATIONS; SINGULARITY FORMATION; WELL-POSEDNESS;
D O I
10.1007/s00028-024-00998-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the barotropic Euler equations with pairwise attractive Riesz interactions and linear velocity damping in the periodic domain. We establish the global-in-time well-posedness theory for the system near an equilibrium state if the coefficient of the Riesz interaction term is small. We also analyze the large-time behavior of solutions showing the exponential rate of convergence toward the equilibrium state as time goes to infinity.
引用
收藏
页数:36
相关论文
共 17 条
  • [1] Regularity of solutions of the fractional porous medium flow
    不详
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (05) : 1701 - 1746
  • [2] On Vlasov-Manev equations .1. Foundations, properties, and nonglobal existence
    Bobylev, AV
    Dukes, P
    Illner, R
    Victory, HD
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) : 885 - 911
  • [3] Generalized surface quasi-geostrophic equations with singular velocities
    Chae, Dongho
    Constantin, Peter
    Cordoba, Diego
    Gancedo, Francisco
    Wu, Jiahong
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (08) : 1037 - 1066
  • [4] WELL-POSEDNESS AND SINGULARITY FORMATION FOR VLASOV-RIESZ SYSTEM
    Choi, Young-Pil
    Jeong, In-Jee
    [J]. KINETIC AND RELATED MODELS, 2023, : 489 - 513
  • [5] The pressureless damped Euler-Riesz equations
    Choi, Young-Pil
    Jung, Jinwook
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2023, 40 (03): : 593 - 630
  • [6] On well-posedness and singularity formation for the Euler-Riesz system
    Choi, Young-Pil
    Jeong, In-Jee
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 : 296 - 332
  • [7] Relaxation to Fractional Porous Medium Equation from Euler-Riesz System
    Choi, Young-Pil
    Jeong, In-Jee
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (06)
  • [8] On the large-time behavior of Euler-Poisson/Navier-Stokes equations
    Choi, Young-Pil
    Jung, Jinwook
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 118
  • [9] COMPRESSIBLE EULER EQUATIONS INTERACTING WITH INCOMPRESSIBLE FLOW
    Choi, Young-Pil
    [J]. KINETIC AND RELATED MODELS, 2015, 8 (02) : 335 - 358
  • [10] On the Global Existence for the Compressible Euler-Riesz System
    Danchin, R.
    Ducomet, B.
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)