A High-Precision LiDAR-Inertial Odometry via Invariant Extended Kalman Filtering and Efficient Surfel Mapping

被引:7
作者
Zhang, Houzhan [1 ,2 ]
Xiao, Rong [1 ,2 ]
Li, Jiaxin [3 ]
Yan, Chuangye [1 ,2 ]
Tang, Huajin [4 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Minist Educ, Chengdu 610017, Peoples R China
[2] Sichuan Univ, Engn Res Ctr Machine Learning & Ind Intelligence, Minist Educ, Chengdu 610017, Peoples R China
[3] PetroChina Southwest Oil & Gasfield Co, Beijing 100011, Peoples R China
[4] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser radar; Odometry; Kalman filters; State estimation; Simultaneous localization and mapping; Real-time systems; Point cloud compression; Invariant extended Kalman filter (InEKF) and surfel mapping; LiDAR-inertial odometry (LIO); simultaneous localization and mapping (SLAM); state estimator; ROBUST; LIO;
D O I
10.1109/TIM.2024.3382751
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Simultaneous localization and mapping (SLAM) via light detection and ranging (LiDAR)-inertial odometry is a crucial technology in many automated applications. However, constructing a consistent state estimator with an efficient mapping method still remains a challenge for LiDAR-inertial odometry (LIO) systems. In this article, we propose a tightly coupled LIO system via invariant extended Kalman filter (InEKF) and efficient surfel mapping. First, based on the InEKF theory, we build a consistent state estimator for a tightly coupled LIO system. Second, we propose a novel LIO system by combining the InEKF state estimator with a surfel-based map, named SuIn-LIO, which not only enables the accuracy of state estimation and mapping but also enables real-time registration of a new LiDAR scan. Extensive experiments on different public benchmark datasets demonstrate that SuIn-LIO can achieve comparable performance with other state-of-the-art methods in accuracy and efficiency. To benefit of the community, our implementation will be open-sourced on Github.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 42 条
[1]   Faster-LIO: Lightweight Tightly Coupled Lidar-Inertial odometry Using Parallel Sparse Incremental Voxels [J].
Bai, Chunge ;
Xiao, Tao ;
Chen, Yajie ;
Wang, Haoqian ;
Zhang, Fang ;
Gao, Xiang .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :4861-4868
[2]   The Invariant Extended Kalman Filter as a Stable Observer [J].
Barrau, Axel ;
Bonnabel, Silvere .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) :1797-1812
[3]  
Barrau Axel., 2015, Non-Linear State Error Based Extended Kalman Filters with Applications to Navigation, P179
[4]  
Behley J, 2018, ROBOTICS: SCIENCE AND SYSTEMS XIV
[5]  
Bonnabel S, 2012, LECT NOTES CONTR INF, V422, P3
[6]  
Brossard M, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P2021, DOI 10.23919/ICIF.2018.8455807
[7]  
Cai Y., 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.10808
[8]   Direct LiDAR Odometry: Fast Localization With Dense Point Clouds [J].
Chen, Kenny ;
Lopez, Brett T. ;
Agha-mohammadi, Ali-akbar ;
Mehta, Ankur .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :2000-2007
[9]   SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic and Geometric Information [J].
Cheng, Shuhong ;
Sun, Changhe ;
Zhang, Shijun ;
Zhang, Dianfan .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
[10]   Practical phase unwrapping of interferometric fringes based on unscented Kalman filter technique [J].
Cheng, Zhongtao ;
Liu, Dong ;
Yang, Yongying ;
Ling, Tong ;
Chen, Xiaoyu ;
Zhang, Lei ;
Bai, Jian ;
Shen, Yibing ;
Miao, Liang ;
Huang, Wei .
OPTICS EXPRESS, 2015, 23 (25) :32337-32349