Fractional quantum Hall interface induced by geometric singularity

被引:0
作者
Li, Qi [1 ,2 ]
Yang, Yi [3 ,4 ]
Li, Zhou [1 ,2 ,5 ]
Wang, Hao [6 ]
Hu, Zi-Xiang [3 ,4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, GBA Branch, Guangzhou 510700, Peoples R China
[2] Guangdong Prov Key Lab Terahertz Quantum Electrom, Guangzhou 510700, Peoples R China
[3] Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
[4] Chongqing Univ, Chongqing Key Lab Strongly Coupled Phys, Chongqing 401331, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[6] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 奥地利科学基金会;
关键词
EDGE EXCITATIONS; LANDAU-LEVELS; STATES; QUANTIZATION; NUMBER; FLUID;
D O I
10.1103/PhysRevB.109.155102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The geometric response, which goes beyond the electromagnetic response, of quantum Hall (QH) liquids is crucial for understanding their topological characteristics. According to the Wen-Zee theory, the topological spin is intricately linked to the curvature of the space in which the electrons exist. The presence of conical geometry offers a local, isolated geometric singularity, making it an ideal setting for exploring geometric responses. In the context of two-dimensional electrons in a perpendicular magnetic field, each Landau orbit occupies the same area. The cone geometry naturally provides a structure where the distances between adjacent orbits vary gradually and can be easily adjusted by modifying the tip angle. The cone tip introduces a geometric singularity that impacts electron density and interacts with electron motion, which has been extensively studied. Additionally, this geometry automatically creates a smooth interface or crossover between the crystalline charge-density-wave state and the liquidlike fractional QH state. In this paper, we investigate the properties of this interface from multiple perspectives, shedding light on the behavior of QH liquids in such geometric configurations.
引用
收藏
页数:11
相关论文
共 71 条
[1]   Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field [J].
Abanov, Alexander G. ;
Gromov, Andrey .
PHYSICAL REVIEW B, 2014, 90 (01)
[2]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[3]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[4]   VISCOSITY OF QUANTUM HALL FLUIDS [J].
AVRON, JE ;
SEILER, R ;
ZOGRAF, PG .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :697-700
[5]   Wigner crystallization in rapidly rotating 2D dipolar fermi gases [J].
Baranov, M. A. ;
Fehrmann, H. ;
Lewenstein, M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[6]   Fractional quantum hall states in ultracold rapidly rotating dipolar fermi gases [J].
Baranov, MA ;
Osterloh, K ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2005, 94 (07)
[7]   'One-dimensional' theory of the quantum Hall system [J].
Bergholtz, EJ ;
Karlhede, A .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
[8]   Anatomy of Abelian and Non-Abelian Fractional Quantum Hall States [J].
Bernevig, B. Andrei ;
Regnault, N. .
PHYSICAL REVIEW LETTERS, 2009, 103 (20)
[9]   Model fractional quantum Hall states and Jack polynomials [J].
Bernevig, B. Andrei ;
Haldane, F. D. M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[10]   Properties of Non-Abelian Fractional Quantum Hall States at Filling ν=k/r [J].
Bernevig, B. Andrei ;
Haldane, F. D. M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (24)