Vanishing capillarity-viscosity limit of the incompressible Navier-Stokes-Korteweg equations with slip boundary condition

被引:0
作者
Wang, Pingping [1 ]
Zhang, Zhipeng [2 ]
机构
[1] Nanjing Univ Finance & Econ, Sch Econ, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible Navier-Stokes-Korteweg equations; Slip boundary condition; Vanishing capillarity-viscosity limit; Convergence rate; INVISCID LIMIT; ANALYTIC SOLUTIONS; HALF-SPACE; VORTICITY; SYSTEM; FLOWS; EULER;
D O I
10.1016/j.na.2024.113526
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the vanishing capillarity-viscosity limit of the incompressible Navier-Stokes-Korteweg (NSK) equations in a three-dimensional horizontally periodic strip domain, in which the velocity of the fluid is supplemented with slip boundary condition and the gradient of density with Dirichlet boundary condition on the boundary. We prove that there exists an positive constant T-0 independent on the capillarity and viscosity coefficients, such that the incompressible NSK equations have a unique strong solution on [0, T-0] and the solution is uniformly bounded in H-3. Based on the uniform estimates, we further give the convergence rate in H-1 from the solutions of the incompressible NSK equations to the solution of the inhomogeneous incompressible Euler equations as the capillarity and viscosity coefficients go to zero simultaneously.
引用
收藏
页数:10
相关论文
共 31 条
[1]  
Adams R.A., 2003, SOBOLEV SPACES, P3
[2]   On the Vanishing Viscosity Limit of 3D Navier-Stokes Equations under Slip Boundary Conditions in General Domains [J].
Berselli, Luigi Carlo ;
Spirito, Stefano .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (01) :171-198
[3]   VANISHING CAPILLARITY LIMIT OF THE COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE TO THE NAVIER-STOKES EQUATIONS [J].
Bian, Dongfen ;
Yao, Lei ;
Zhu, Changjiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1633-1650
[4]   ON THE MOTION OF INCOMPRESSIBLE INHOMOGENEOUS EULER-KORTEWEG FLUIDS [J].
Bulicek, Miroslav ;
Feireisl, Eduard ;
Malek, Josef ;
Shvydkoy, Roman .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03) :497-515
[5]   VANISHING CAPILLARITY LIMIT OF THE NAVIER-STOKES-KORTEWEG SYSTEM IN ONE DIMENSION WITH DEGENERATE VISCOSITY COEFFICIENT AND DISCONTINUOUS INITIAL DENSITY [J].
Burtea, Cosmin ;
Haspot, Boris .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) :1428-1469
[6]   Vorticity and regularity for flows under the Navier boundary condition [J].
da Veiga, H. Beirao .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) :907-918
[7]   Concerning the W k,p -Inviscid Limit for 3-D Flows Under a Slip Boundary Condition [J].
da Veiga, H. Beirao ;
Crispo, F. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (01) :117-135
[8]   Sharp Inviscid Limit Results under Navier Type Boundary Conditions. An Lp Theory [J].
da Veiga, H. Beirao ;
Crispo, F. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (03) :397-411
[9]  
DUNN JE, 1985, ARCH RATION MECH AN, V88, P95
[10]   On the zero-viscosity limit of the Navier-Stokes equations in R+3 without analyticity [J].
Fei, Mingwen ;
Tao, Tao ;
Zhang, Zhifei .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 112 :170-229