共 119 条
- [1] Snyder J.C., Thole K.A., Understanding laser powder bed fusion surface roughness, J. Manuf. Sci. Eng, (2020)
- [2] Ansari M., Jabari E., Toyserkani E., Opportunities and challenges in additive manufacturing of functionally graded metallic materials via powder-fed laser directed energy deposition: A review, J. Mater. Process. Technol, (2021)
- [3] Omiyale B.O., Farayibi P.K., Additive manufacturing in the oil and gas industries: A review, Anal. Tech. Szeged, (2020)
- [4] Ladani L., Sadeghilaridjani M., Review of powder bed fusion additive manufacturing for metals, Metals, (2021)
- [5] Gullane A., Murray J.W., Hyde C.J., Sankare S., Evirgen A., Clare A.T., On the use of multiple layer thicknesses within laser powder bed fusion and the effect on mechanical properties, Mater. Des, (2021)
- [6] Lu X., Zhang W., Chiumenti M., Cervera M., Gillham B., Yu P., Yin S., Lin X., Babu R.P., Lupoi R., Crack-free laser powder bed fusion by substrate design, Addit. Manuf, (2022)
- [7] McGaffey M., Zur L.A., Bachynski N., Oblak M., James F., Weese J.S., Manual polishing of 3D printed metals produced by laser powder bed fusion reduces biofilm formation, PLoS ONE, (2019)
- [8] Lek Y.Z., Wang C., Shen X., Chen Z., Ramamurty U., Zhou K., Additive manufacturing of corrosion-resistant maraging steel M789 by directed energy deposition, Mater. Sci. Eng., A, (2022)
- [9] Sandmann P., Keller S., Kashaev N., Ghouse S., Hooper P.A., Klusemann B., Davies C.M., Influence of laser shock peening on the residual stresses in additively manufactured 316L by Laser Powder Bed Fusion: A combined experimental–numerical study, Addit. Manuf, (2022)
- [10] Chen M., Petegem S.V., Zou Z., Simonelli M., Tse Y.Y., Chang C.S.T., Makowska M.G., Sanchez D.F., Swygenhoven H.M.V., Microstructural engineering of a dual-phase Ti-Al-V-Fe alloy via in situ alloying during laser powder bed fusion, Addit. Manuf, (2022)