Conjugacy class numbers and nilpotent subgroups of finite groups

被引:0
作者
Pan, Hongfei [1 ]
Dong, Shuqin [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
PROBABILITY; BOUNDS;
D O I
10.1515/jgth-2023-0263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, k(G) the number of conjugacy classes of G, and B a nilpotent subgroup of G. In this paper, we prove that vertical bar BO pi (G)/O-pi(G)vertical bar <= vertical bar G vertical bar/k(G) if G is solvable and that 15/7 vertical bar BO pi (G)/O-pi(G)vertical bar <= vertical bar G vertical bar/k(G) if G is nonsolvable, where pi = pi(B) is the set of prime divisors of vertical bar B vertical bar. Both bounds are best possible.
引用
收藏
页码:1219 / 1232
页数:14
相关论文
共 11 条
[1]   On the commuting probability of p-elements in a finite group [J].
Burness, Timothy C. ;
Guralnick, Robert ;
Moreto, Alexander ;
Navarro, Gabriel .
ALGEBRA & NUMBER THEORY, 2023, 17 (06) :1209-1229
[2]  
Dixon J. D., 1967, J AUSTR MATH SOC, V7, P417
[3]   Even Character Degrees and Ito-Michler Theorem [J].
Dong, Shuqin ;
Pan, Hongfei .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,
[4]   CYCLE INDICES FOR FINITE ORTHOGONAL GROUPS OF EVEN CHARACTERISTIC [J].
Fulman, Jason ;
Saxl, Jan ;
Pham Huu Tiep .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2539-2566
[5]   The solution of the k(G V)-problem [J].
Gluck, D ;
Magaard, K ;
Riese, U ;
Schmid, P .
JOURNAL OF ALGEBRA, 2004, 279 (02) :694-719
[6]   On the commuting probability in finite groups [J].
Guralnick, Robert M. ;
Robinson, Geoffrey R. .
JOURNAL OF ALGEBRA, 2006, 300 (02) :509-528
[7]   WHAT IS PROBABILITY THAT 2 GROUP ELEMENTS COMMUTE [J].
GUSTAFSON, WH .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (09) :1031-1034
[8]   Upper bounds for the number of conjugacy classes of a finite group [J].
Liebeck, MW ;
Pyber, L .
JOURNAL OF ALGEBRA, 1997, 198 (02) :538-562
[9]   Two results on the character degree sums [J].
Pan, Hongfei ;
Dong, Shuqin ;
Yang, Yong .
JOURNAL OF ALGEBRA, 2021, 584 :243-259
[10]   The largest conjugacy class size and the nilpotent subgroups of finite groups [J].
Qian, Guohua ;
Yang, Yong .
JOURNAL OF GROUP THEORY, 2019, 22 (02) :267-276