Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages

被引:18
作者
Choi, Jong Hui [1 ]
Kim, Dong Won [1 ]
Jung, Do Hwan [1 ]
Kim, Keon-Han [2 ]
Kim, Jihoon [1 ]
Kang, Jeung Ku [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Lawrence Berkeley Natl Lab, Chem Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
基金
新加坡国家研究基金会;
关键词
Low-crystallinity conductive multivalence iron; sulfide-embedded S-doped carbon/graphene; heterostructure anode; High-surface area O-doped carbon cathode; 3D porous N-rich graphitic carbon frameworks; Operando analysis; Ultrahigh energy density and fast-rechargeable; sodium-ion hybrid energy storages; HIGH-POWER; LITHIUM; BATTERIES; KINETICS; NITROGEN;
D O I
10.1016/j.ensm.2024.103368
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion hybrid energy storages (SIHESs) are promising electrochemical energy storages for many applications, but their low energy and power densities are yet to be overcome. Herein, we report a strategy to realize ultrahigh-energy density and fast-rechargeable SIHESs. Ultrafine iron sulfide-embedded S-doped carbon/graphene (FS/C/G) anode materials are synthesized from iron-based metal-organic framework (MOF)/graphene oxide heterostructures via graphitic carbon formation and sulfidation. Operando and ex-situ analyses reveal that cycled iron sulfides are rescaled into low-crystallinity conductive fragments with Fe vacancies and multivalence Fe2+/Fe3+ states. Size reduction to fragments inside a 3D porous S-doped N-rich graphitic carbon framework induces high-capacity/high-rate FS/C/G performance. Moreover, 3D porous O-doped carbon cathode materials are synthesized from zeolitic imidazolate frameworks (ZIFs) via pyrolysis-assisted micropore and KOH-assisted mesopore formations. This ZIF-derived porous carbon (ZDPC) has a similar to 20-fold higher surface area (3972 m(2)/g) than conventional ZDCs, O-induced micropores/N-rich sites for high capacity, heteroatom-induced ion-accessible defects/mesopores, and N-rich conductive graphitic carbon networks. Additionally, FS/C/G//ZDPC SHHES benefits from diffusion-controlled and capacitive reactions, as demonstrated by its hitherto highest energy density of 247 Wh kg(-1) outperforming state-of-the-art SIHESs, fast-rechargeable power density (up to 34,748 W kg(-1)) exceeding battery-type reactions by more than 100 folds, and cycle stability with similar to 100 % Coulombic efficiency over 5000 charge-discharge cycles.
引用
收藏
页数:15
相关论文
共 86 条
[1]   How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? [J].
Abraham, K. M. .
ACS ENERGY LETTERS, 2020, 5 (11) :3544-3547
[2]   Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes [J].
Bi, Sheng ;
Banda, Harish ;
Chen, Ming ;
Niu, Liang ;
Chen, Mingyu ;
Wu, Taizheng ;
Wang, Jiasheng ;
Wang, Runxi ;
Feng, Jiamao ;
Chen, Tianyang ;
Dinca, Mircea ;
Kornyshev, Alexei A. ;
Feng, Guang .
NATURE MATERIALS, 2020, 19 (05) :552-+
[3]   To Be or Not To Be Pseudocapacitive? [J].
Brousse, Thierry ;
Belanger, Daniel ;
Long, Jeffrey W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5185-A5189
[4]   Comprehensive Understanding of Sodium-Ion Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments [J].
Cai, Peng ;
Zou, Kangyu ;
Deng, Xinglan ;
Wang, Baowei ;
Zheng, Min ;
Li, Longhao ;
Hou, Hongshuai ;
Zou, Guoqiang ;
Ji, Xiaobo .
ADVANCED ENERGY MATERIALS, 2021, 11 (16)
[5]   Batteries with high theoretical energy densities [J].
Cao, Wenzhuo ;
Zhang, Jienan ;
Li, Hong .
ENERGY STORAGE MATERIALS, 2020, 26 :46-55
[6]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[7]   An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework [J].
Chen, Hao ;
Dai, Chunlong ;
Li, Yanan ;
Zhan, Renming ;
Wang, Min-Qiang ;
Guo, Bingshu ;
Zhang, Youquan ;
Liu, Heng ;
Xu, Maowen ;
Bao, Shu-juan .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (48) :24860-24868
[8]   Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite [J].
Chen, Yuming ;
Li, Xiaoyan ;
Park, Kyusung ;
Lu, Wei ;
Wang, Chao ;
Xue, Weijiang ;
Yang, Fei ;
Zhou, Jiang ;
Suo, Liumin ;
Lin, Tianquan ;
Huang, Haitao ;
Li, Ju ;
Goodenough, John B. .
CHEM, 2017, 3 (01) :152-163
[9]   Conversion-Type Nonmetal Elemental Tellurium Anode with High Utilization for Mild/Alkaline Zinc Batteries [J].
Chen, Ze ;
Li, Chuan ;
Yang, Qi ;
Wang, Donghong ;
Li, Xinliang ;
Huang, Zhaodong ;
Liang, Guojin ;
Chen, Ao ;
Zhi, Chunyi .
ADVANCED MATERIALS, 2021, 33 (51)
[10]   Achieving high energy density and high power density with pseudocapacitive materials [J].
Choi, Christopher ;
Ashby, David S. ;
Butts, Danielle M. ;
DeBlock, Ryan H. ;
Wei, Qiulong ;
Lau, Jonathan ;
Dunn, Bruce .
NATURE REVIEWS MATERIALS, 2020, 5 (01) :5-19