On-device phase engineering

被引:9
作者
Liu, Xiaowei [1 ]
Shan, Junjie [1 ]
Cao, Tianjun [1 ]
Zhu, Liang [2 ]
Ma, Jiayu [3 ]
Wang, Gang [2 ]
Shi, Zude [4 ]
Yang, Qishuo [2 ]
Ma, Mingyu [4 ]
Liu, Zenglin [1 ]
Yan, Shengnan [1 ]
Wang, Lizheng [1 ]
Dai, Yudi [1 ]
Xiong, Junlin [1 ]
Chen, Fanqiang [1 ]
Wang, Buwei [1 ]
Pan, Chen [5 ]
Wang, Zhenlin [1 ]
Cheng, Bin [5 ]
He, Yongmin [4 ]
Luo, Xin [3 ]
Lin, Junhao [2 ,6 ]
Liang, Shi-Jun [1 ]
Miao, Feng [1 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen Key Lab Adv Quantum Funct Mat & Devices, Shenzhen, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys, Ctr Phys Mech & Biophys, Guangdong Prov Key Lab Magnetoelect Phys & Devices, Guangzhou, Peoples R China
[4] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha, Peoples R China
[5] Nanjing Univ Sci & Technol, Inst Interdisciplinary Phys Sci, Sch Phys, Nanjing, Peoples R China
[6] Guangdong Hong Kong Macao Greater Bay Area Guangdo, Quantum Sci Ctr, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
TRANSITION; SUPERCONDUCTIVITY; RESISTANCE; CONTACT;
D O I
10.1038/s41563-024-01888-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In situ tailoring of two-dimensional materials' phases under external stimulus facilitates the manipulation of their properties for electronic, quantum and energy applications. However, current methods are mainly limited to the transitions among phases with unchanged chemical stoichiometry. Here we propose on-device phase engineering that allows us to realize various lattice phases with distinct chemical stoichiometries. Using palladium and selenide as a model system, we show that a PdSe2 channel with prepatterned Pd electrodes can be transformed into Pd17Se15 and Pd4Se by thermally tailoring the chemical composition ratio of the channel. Different phase configurations can be obtained by precisely controlling the thickness and spacing of the electrodes. The device can be thus engineered to implement versatile functions in situ, such as exhibiting superconducting behaviour and achieving ultralow-contact resistance, as well as customizing the synthesis of electrocatalysts. The proposed on-device phase engineering approach exhibits a universal mechanism and can be expanded to 29 element combinations between a metal and chalcogen. Our work highlights on-device phase engineering as a promising research approach through which to exploit fundamental properties as well as their applications. A strategy of on-device phase engineering of two-dimensional materials is proposed, allowing the in situ realization of various lattice phases with distinct stoichiometries and versatile functions.
引用
收藏
页码:1363 / 1369
页数:9
相关论文
共 51 条
[1]   Phase engineering of nanomaterials [J].
Chen, Ye ;
Lai, Zhuangchai ;
Zhang, Xiao ;
Fan, Zhanxi ;
He, Qiyuan ;
Tan, Chaoliang ;
Zhang, Hua .
NATURE REVIEWS CHEMISTRY, 2020, 4 (05) :243-256
[2]   Characteristics and performance of two-dimensional materials for electrocatalysis [J].
Chia, Xinyi ;
Pumera, Martin .
NATURE CATALYSIS, 2018, 1 (12) :909-921
[3]   Phase patterning for ohmic homojunction contact in MoTe2 [J].
Cho, Suyeon ;
Kim, Sera ;
Kim, Jung Ho ;
Zhao, Jiong ;
Seok, Jinbong ;
Keum, Dong Hoon ;
Baik, Jaeyoon ;
Choe, Duk-Hyun ;
Chang, K. J. ;
Suenaga, Kazu ;
Kim, Sung Wng ;
Lee, Young Hee ;
Yang, Heejun .
SCIENCE, 2015, 349 (6248) :625-628
[4]   High Mobility 2D Palladium Diselenide Field-Effect Transistors with Tunable Ambipolar Characteristics [J].
Chow, Wai Leong ;
Yu, Peng ;
Liu, Fucai ;
Hong, Jinhua ;
Wang, Xingli ;
Zeng, Qingsheng ;
Hsu, Chuang-Han ;
Zhu, Chao ;
Zhou, Jiadong ;
Wang, Xiaowei ;
Xia, Juan ;
Yan, Jiaxu ;
Chen, Yu ;
Wu, Di ;
Yu, Ting ;
Shen, Zexiang ;
Lin, Hsin ;
Jin, Chuanhong ;
Tay, Beng Kang ;
Liu, Zheng .
ADVANCED MATERIALS, 2017, 29 (21)
[5]  
Deng DH, 2016, NAT NANOTECHNOL, V11, P218, DOI [10.1038/NNANO.2015.340, 10.1038/nnano.2015.340]
[6]   'High-throughput search for magnetic and topological order in transition metal oxides [J].
Frey, Nathan C. ;
Horton, Matthew K. ;
Munro, Jason M. ;
Griffin, Sinead M. ;
Persson, Kristin A. ;
Shenoy, Vivek B. .
SCIENCE ADVANCES, 2020, 6 (50)
[7]   Quantum criticality in twisted transition metal dichalcogenides [J].
Ghiotto, Augusto ;
Shih, En-Min ;
Pereira, Giancarlo S. S. G. ;
Rhodes, Daniel A. ;
Kim, Bumho ;
Zang, Jiawei ;
Millis, Andrew J. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Hone, James C. ;
Wang, Lei ;
Dean, Cory R. ;
Pasupathy, Abhay N. .
NATURE, 2021, 597 (7876) :345-+
[8]   van der Waals Metallic Transition Metal Dichalcogenides [J].
Han, Gang Hee ;
Dinh Loc Duong ;
Keum, Dong Hoon ;
Yun, Seok Joon ;
Lee, Young Hee .
CHEMICAL REVIEWS, 2018, 118 (13) :6297-6336
[9]   Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals [J].
He, Yang ;
Li, Bin ;
Wang, Chongmin ;
Mao, Scott X. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production [J].
He, Yongmin ;
Liu, Liren ;
Zhu, Chao ;
Guo, Shasha ;
Golani, Prafful ;
Koo, Bonhyeong ;
Tang, Pengyi ;
Zhao, Zhiqiang ;
Xu, Manzhang ;
Yu, Peng ;
Zhou, Xin ;
Gao, Caitian ;
Wang, Xuewen ;
Shi, Zude ;
Zheng, Lu ;
Yang, Jiefu ;
Shin, Byungha ;
Arbiol, Jordi ;
Duan, Huigao ;
Du, Yonghua ;
Heggen, Marc ;
Dunin-Borkowski, Rafal E. ;
Guo, Wanlin ;
Wang, Qi Jie ;
Zhang, Zhuhua ;
Liu, Zheng .
NATURE CATALYSIS, 2022, 5 (03) :212-221