Passivation agent with dipole moment for surface modification towards efficient and stable perovskite solar cells

被引:24
作者
Wang, Ge [1 ]
Wang, Chen [3 ]
Gao, Yajun [4 ]
Wen, Shanpeng [1 ]
MacKenzie, Roderick C. I. [5 ]
Guo, Liuxing [1 ]
Dong, Wei [1 ]
Ruan, Shengping [2 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, State Key Lab Integrated Optoelect, Changchun 130012, Jilin, Peoples R China
[3] Jilin Univ, Coll Chem, State Key Lab Supramol Struct & Mat, Changchun 130012, Jilin, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, KAUST Solar Ctr KSC, Thuwal 239556900, Saudi Arabia
[5] Univ Nottingham, Fac Engn, Univ Pk, Nottingham NG7 2RD, England
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 64卷
关键词
4-Chlorobenzoic acid; Interface engineering; Passivation; Surface dipole; Perovskite solar cells; DEFECT PASSIVATION; HALIDE PEROVSKITES; PERFORMANCE; INTERLAYERS;
D O I
10.1016/j.jechem.2021.04.023
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Recently, there has been renewed interest in interface engineering as a means to further push the perfor-mance of perovskite solar cells closer to the Schockly-Queisser limit. Herein, for the first time we employ a multi-functional 4-chlorobenzoic acid to produce a self-assembled monolayer on a perovskite surface. With this interlayer we observe passivation of perovskite surface defects and a significant suppression of non-radiative charge recombination. Furthermore, at the surface of the interlayer we observe, charge dipoles which tune the energy level alignment, enabling a larger energetic driving force for hole extrac-tion. The perovskite surface becomes more hydrophilic due to the presence of the interlayer. Consequently, we observe an improvement in open-circuit voltage from 1.08 to 1.16 V, a power conver-sion efficiency improvement from 18% to 21% and an improved stability under ambient conditions. Our work highlights the potential of SAMs to engineer the photo-electronic properties and stability of per-ovskite interfaces to achieve high-performance light harvesting devices. (c) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 56 条
[1]   Maximizing and stabilizing luminescence from halide perovskites with potassium passivation [J].
Abdi-Jalebi, Mojtaba ;
Andaji-Garmaroudi, Zahra ;
Cacovich, Stefania ;
Stavrakas, Camille ;
Philippe, Bertrand ;
Richter, Johannes M. ;
Alsari, Mejd ;
Booker, Edward P. ;
Hutter, Eline M. ;
Pearson, Andrew J. ;
Lilliu, Samuele ;
Savenije, Tom J. ;
Rensmo, Hakan ;
Divitini, Giorgio ;
Ducati, Caterina ;
Friend, Richard H. ;
Stranks, Samuel D. .
NATURE, 2018, 555 (7697) :497-+
[2]   Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells [J].
Alharbi, Essa A. ;
Alyamani, Ahmed Y. ;
Kubicki, Dominik J. ;
Uhl, Alexander R. ;
Walder, Brennan J. ;
Alanazi, Anwar Q. ;
Luo, Jingshan ;
Burgos-Caminal, Andres ;
Albadri, Abdulrahman ;
Albrithen, Hamad ;
Alotaibi, Mohammad Hayal ;
Moser, Jacques-E ;
Zakeeruddin, Shaik M. ;
Giordano, Fabrizio ;
Emsley, Lyndon ;
Gratzel, Michael .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Applications of Self-Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability [J].
Ali, Fawad ;
Roldan-Carmona, Cristina ;
Sohail, Muhammad ;
Nazeeruddin, Mohammad Khaja .
ADVANCED ENERGY MATERIALS, 2020, 10 (48)
[4]   Enhanced efficiency and reduced hysteresis by TiO2 modification in high-performance perovskite solar cells [J].
Arivunithi, Veera Murugan ;
Kim, Soohyun ;
Choi, Jungmin ;
Sung, Jong Hun ;
Yoo, Hyun Deog ;
Shin, Eun-Sol ;
Noh, Yong-Young ;
Gal, Yeong-Soon ;
Lee, Hyunjung ;
Jin, Sung-Ho .
ORGANIC ELECTRONICS, 2020, 86
[5]   Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene [J].
Bai, Yang ;
Dong, Qingfeng ;
Shao, Yuchuan ;
Deng, Yehao ;
Wang, Qi ;
Shen, Liang ;
Wang, Dong ;
Wei, Wei ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2016, 7
[6]  
Bi DQ, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.142, 10.1038/NENERGY.2016.142]
[7]   Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency [J].
Braly, Ian L. ;
deQilettes, Dane W. ;
Pazos-Outon, Luis M. ;
Burke, Sven ;
Ziffer, Mark E. ;
Ginger, David S. ;
Hillhouse, Hugh W. .
NATURE PHOTONICS, 2018, 12 (06) :355-+
[8]   Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J].
Bu, Tongle ;
Li, Jing ;
Zheng, Fei ;
Chen, Weijian ;
Wen, Xiaoming ;
Ku, Zhiliang ;
Peng, Yong ;
Zhong, Jie ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
NATURE COMMUNICATIONS, 2018, 9
[9]   Organic N-Type Molecule: Managing the Electronic States of Bulk Perovskite for High-Performance Photovoltaics [J].
Chen, Haiyang ;
Zhan, Yu ;
Xu, Guiying ;
Chen, Weijie ;
Wang, Shuhui ;
Zhang, Moyao ;
Li, Yaowen ;
Li, Yongfang .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (36)
[10]   Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells [J].
Chen, Jiangzhao ;
Zhao, Xing ;
Kim, Seul-Gi ;
Park, Nam-Gyu .
ADVANCED MATERIALS, 2019, 31 (39)