Thermal energy storage performance of liquid polyethylene glycol in core-shell polycarbonate and reduced graphene oxide fibers

被引:10
作者
Das, Madhurima [1 ]
Ura, Daniel P. [1 ]
Szewczyk, Piotr K. [1 ]
Berniak, Krzysztof [1 ]
Knapczyk-Korczak, Joanna [1 ]
Marzec, Mateusz M. [2 ]
Pichor, Waldemar [3 ]
Stachewicz, Urszula [1 ]
机构
[1] AGH Univ Krakow, Fac Met Engn & Ind Comp Sci, Al A Mickiewicza 30, PL-30059 Krakow, Poland
[2] AGH Univ Krakow, Acad Ctr Mat & Nanotechnol, Al A Mickiewicza 30, PL-30059 Krakow, Poland
[3] AGH Univ Krakow, Fac Mat Sci & Ceram, Al A Mickiewicza 30, PL-30059 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Core-shell fiber; Phase change materials; Thermal management; Heat transfer; Hydrophobicity; PHASE-CHANGE MATERIALS; CARBON NANOTUBES; CONDUCTIVITY; HEAT; TRANSITION; CONVERSION; NANOFIBERS; TRANSPORT; PCM; PEG;
D O I
10.1007/s42114-024-00934-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal energy storage is a promising, sustainable solution for challenging energy management issues. We deploy the fabrication of the reduced graphene oxide (rGO)-polycarbonate (PC) as shell and polyethylene glycol (PEG) as core to obtain hydrophobic phase change electrospun core-shell fiber system for low-temperature thermal management application. The encapsulation ratio of PEG is controlled by controlling the core flow rate, and similar to 93% heat energy storage efficacy is apparent for 1.5 mlh(-1) of core flow rate. Moreover, the prepared fiber possesses maximum latent melting and freezing enthalpy of 30.1 +/- 3.7 and 25.6 +/- 4.0 Jg(-1), respectively. The transient dynamic temperature vs. time curve of the rGO-loaded phase change fiber demonstrates the delay of fiber surface temperature change compared to pristine fiber. We indeed show that the tunable heat transfer and thermal energy storage efficacy of phase change fiber is achieved via controlled liquid PEG delivery and the addition of rGO in shell architecture. Notably, the effectiveness of unique phase change material (PCM)-based core-shell fibers is concluded from advanced scanning thermal microscopy (SThM) and self-thermoregulation tests.
引用
收藏
页数:19
相关论文
共 88 条
[61]   Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage [J].
Sun, Zhao ;
Sun, Kun ;
Zhang, Huanzhi ;
Liu, Huan ;
Wu, Dezhen ;
Wang, Xiaodong .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 225
[62]   The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology [J].
Szewczyk, Piotr K. ;
Stachewicz, Urszula .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2020, 286
[63]   Form-stable phase change composites based on nanofibrillated cellulose/polydopamine hybrid aerogels with extremely high energy storage density and improved photothermal conversion efficiency [J].
Tan, Yunlong ;
Du, Xiaosheng ;
Du, Zongliang ;
Wang, Haibo ;
Cheng, Xu .
RSC ADVANCES, 2021, 11 (10) :5712-5721
[64]   Thermally buffering polyethylene/halloysite/phase change material nanocomposite packaging films for cold storage of foods [J].
Tas, Cuneyt Erdinc ;
Unal, Hayriye .
JOURNAL OF FOOD ENGINEERING, 2021, 292
[65]  
Taylor J., 2001, PHARM J, V267, P128
[66]   Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites [J].
Teng, Chih-Chun ;
Ma, Chen-Chi M. ;
Lu, Chu-Hua ;
Yang, Shin-Yi ;
Lee, Shie-Heng ;
Hsiao, Min-Chien ;
Yen, Ming-Yu ;
Chiou, Kuo-Chan ;
Lee, Tzong-Ming .
CARBON, 2011, 49 (15) :5107-5116
[67]   The Significance of Electrical Polarity in Electrospinning: A Nanoscale Approach for the Enhancement of the Polymer Fibers' Properties [J].
Ura, Daniel P. ;
Stachewicz, Urszula .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2022, 307 (05)
[68]   Critical length reinforcement in core-shell electrospun fibers using composite strategies [J].
Ura, Daniel P. ;
Berniak, Krzysztof ;
Stachewicz, Urszula .
COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 211
[69]   Surface Potential Driven Water Harvesting from Fog [J].
Ura, Daniel P. ;
Knapczyk-Korczak, Joanna ;
Szewczyk, Piotr K. ;
Sroczyk, Ewa A. ;
Busolo, Tommaso ;
Marzec, Mateusz M. ;
Bernasik, Andrzej ;
Kar-Narayan, Sohini ;
Stachewicz, Urszula .
ACS NANO, 2021, 15 (05) :8848-8859
[70]  
Wagner CharlesD., 2003, NIST STANDARD REFERE