iGenSig-Rx: an integral genomic signature based white-box tool for modeling cancer therapeutic responses using multi-omics data

被引:0
作者
Lee, Sanghoon [1 ,2 ,3 ]
Sun, Min [1 ,9 ]
Hu, Yiheng [1 ,2 ]
Wang, Yue [1 ,2 ]
Islam, Md N. [6 ]
Goerlitz, David [7 ]
Lucas, Peter C. [1 ,2 ,8 ]
Lee, Adrian V. [1 ,5 ]
Swain, Sandra M. [8 ]
Tang, Gong [4 ,8 ]
Wang, Xiao-Song [1 ,2 ,3 ]
机构
[1] Univ Pittsburgh, UPMC Hillman Canc Ctr, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Sch Med, Dept Pathol, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Sch Med, Dept Biomed Informat, Pittsburgh, PA 15206 USA
[4] Univ Pittsburgh, Sch Publ Hlth, Dept Biostat, Pittsburgh, PA 15261 USA
[5] Univ Pittsburgh, Dept Pharmacol & Chem Biol, Pittsburgh, PA 15213 USA
[6] Georgetown Univ, Med Ctr, Genom & Epigen Shared Resource GESR, Washington, DC 20057 USA
[7] Georgetown Univ, Lombardi Comprehens Canc Ctr, Med Ctr, Washington, DC 20057 USA
[8] Natl Surg Adjuvant Breast & Bowel Project NSABP, Pittsburgh, PA 15213 USA
[9] Univ Pittsburgh, Sch Med, Dept Med, Pittsburgh, PA 15261 USA
来源
BMC BIOINFORMATICS | 2024年 / 25卷 / 01期
基金
美国国家科学基金会;
关键词
Breast cancer; HER2-targeted therapy; Integral genomic signature; Therapeutic response prediction; Multi-omics modeling; Precision oncology; HER2-POSITIVE BREAST-CANCER; EPITHELIAL-MESENCHYMAL TRANSITION; PACLITAXEL PLUS TRASTUZUMAB; VARIABLE SELECTION; CALGB; 40601; CHEMOTHERAPY; Z1041; TRIAL;
D O I
10.1186/s12859-024-05835-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multi-omics sequencing is poised to revolutionize clinical care in the coming decade. However, there is a lack of effective and interpretable genome-wide modeling methods for the rational selection of patients for personalized interventions. To address this, we present iGenSig-Rx, an integral genomic signature-based approach, as a transparent tool for modeling therapeutic response using clinical trial datasets. This method adeptly addresses challenges related to cross-dataset modeling by capitalizing on high-dimensional redundant genomic features, analogous to reinforcing building pillars with redundant steel rods. Moreover, it integrates adaptive penalization of feature redundancy on a per-sample basis to prevent score flattening and mitigate overfitting. We then developed a purpose-built R package to implement this method for modeling clinical trial datasets. When applied to genomic datasets for HER2 targeted therapies, iGenSig-Rx model demonstrates consistent and reliable predictive power across four independent clinical trials. More importantly, the iGenSig-Rx model offers the level of transparency much needed for clinical application, allowing for clear explanations as to how the predictions are produced, how the features contribute to the prediction, and what are the key underlying pathways. We anticipate that iGenSig-Rx, as an interpretable class of multi-omics modeling methods, will find broad applications in big-data based precision oncology. The R package is available: https://github.com/wangxlab/iGenSig-Rx.
引用
收藏
页数:17
相关论文
共 29 条
[1]   Fluorouracil, epirubicin, and cyclophosphamide (FEC-75) followed by paclitaxel plus trastuzumab versus paclitaxel plus trastuzumab followed by FEC-75 plus trastuzumab as neoadjuvant treatment for patients with HER2-positive breast cancer (Z1041): a randomised, controlled, phase 3 trial [J].
Buzdar, Aman U. ;
Suman, Vera J. ;
Meric-Bernstam, Funda ;
Leitch, A. Marilyn ;
Ellis, Matthew J. ;
Boughey, Judy C. ;
Unzeitig, Gary ;
Royce, Melanie ;
McCall, Linda M. ;
Ewer, Michael S. ;
Hunt, Kelly K. .
LANCET ONCOLOGY, 2013, 14 (13) :1317-1325
[2]   An Epithelial-Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance [J].
Byers, Lauren Averett ;
Diao, Lixia ;
Wang, Jing ;
Saintigny, Pierre ;
Girard, Luc ;
Peyton, Michael ;
Shen, Li ;
Fan, Youhong ;
Giri, Uma ;
Tumula, Praveen K. ;
Nilsson, Monique B. ;
Gudikote, Jayanthi ;
Tran, Hai ;
Cardnell, Robert J. G. ;
Bearss, David J. ;
Warner, Steven L. ;
Foulks, Jason M. ;
Kanner, Steven B. ;
Gandhi, Varsha ;
Krett, Nancy ;
Rosen, Steven T. ;
Kim, Edward S. ;
Herbst, Roy S. ;
Blumenschein, George R. ;
Lee, J. Jack ;
Lippman, Scott M. ;
Ang, K. Kian ;
Mills, Gordon B. ;
Hong, Waun K. ;
Weinstein, John N. ;
Wistuba, Ignacio I. ;
Coombes, Kevin R. ;
Minna, John D. ;
Heymach, John V. .
CLINICAL CANCER RESEARCH, 2013, 19 (01) :279-290
[3]   Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib [J].
Carey, Lisa A. ;
Berry, Donald A. ;
Cirrincione, Constance T. ;
Barry, William T. ;
Pitcher, Brandelyn N. ;
Harris, Lyndsay N. ;
Ollila, David W. ;
Krop, Ian E. ;
Henry, Norah Lynn ;
Weckstein, Douglas J. ;
Anders, Carey K. ;
Singh, Baljit ;
Hoadley, Katherine A. ;
Iglesia, Michael ;
Cheang, Maggie Chon U. ;
Perou, Charles M. ;
Winer, Eric P. ;
Hudis, Clifford A. .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (06) :542-+
[4]   An integrative analysis of the age-associated multi-omic landscape across cancers [J].
Chatsirisupachai, Kasit ;
Lesluyes, Tom ;
Paraoan, Luminita ;
Van Loo, Peter ;
de Magalhaes, Joao Pedro .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Universal concept signature analysis: genome-wide quantification of new biological and pathological functions of genes and pathways [J].
Chi, Xu ;
Sartor, Maureen A. ;
Lee, Sanghoon ;
Anurag, Meenakshi ;
Patil, Snehal ;
Hall, Pelle ;
Wexler, Matthew ;
Wang, Xiao-Song .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) :1717-1732
[6]   Performance of some variable selection methods when multicollinearity is present [J].
Chong, IG ;
Jun, CH .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 78 (1-2) :103-112
[7]   Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics [J].
Ding, Michael Q. ;
Chen, Lujia ;
Cooper, Gregory F. ;
Young, Jonathan D. ;
Lu, Xinghua .
MOLECULAR CANCER RESEARCH, 2018, 16 (02) :269-278
[8]   RNA Sequencing to Predict Response to Neoadjuvant Anti-HER2 Therapy A Secondary Analysis of the NeoALTTO Randomized Clinical Trial [J].
Fumagalli, Debora ;
Venet, David ;
Ignatiadis, Michail ;
Azim, Hatem A., Jr. ;
Maetens, Marion ;
Rothe, Francoise ;
Salgado, Roberto ;
Bradbury, Ian ;
Pusztai, Lajos ;
Harbeck, Nadia ;
Gomez, Henry ;
Chang, Tsai-Wang ;
Coccia-Portugal, Maria Antonia ;
Di Cosimo, Serena ;
de Azambuja, Evandro ;
de la Pena, Lorena ;
Nuciforo, Paolo ;
Brase, Jan C. ;
Huober, Jens ;
Baselga, Jose ;
Piccart, Martine ;
Loi, Sherene ;
Sotiriou, Christos .
JAMA ONCOLOGY, 2017, 3 (02) :227-234
[9]   Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort [J].
Gianni, Luca ;
Eiermann, Wolfgang ;
Semiglazov, Vladimir ;
Manikhas, Alexey ;
Lluch, Ana ;
Tjulandin, Sergey ;
Zambetti, Milvia ;
Vazquez, Federico ;
Byakhow, Mikhail ;
Lichinitser, Mikhail ;
Angel Climent, Miguel ;
Ciruelos, Eva ;
Ojeda, Belen ;
Mansutti, Mauro ;
Bozhok, Alla ;
Baronio, Roberta ;
Feyereislova, Andrea ;
Barton, Claire ;
Valagussa, Pinuccia ;
Baselga, Jose .
LANCET, 2010, 375 (9712) :377-384
[10]   Epithelial-Mesenchymal Transition and Stem Cell Markers in Patients with HER2-Positive Metastatic Breast Cancer [J].
Giordano, Antonio ;
Gao, Hui ;
Anfossi, Simone ;
Cohen, Evan ;
Mego, Michal ;
Lee, Bang-Ning ;
Tin, Sanda ;
De Laurentiis, Michele ;
Parker, Charla A. ;
Alvarez, Ricardo H. ;
Valero, Vicente ;
Ueno, Naoto T. ;
De Placido, Sabino ;
Mani, Sendurai A. ;
Esteva, Francisco J. ;
Cristofanilli, Massimo ;
Reuben, James M. .
MOLECULAR CANCER THERAPEUTICS, 2012, 11 (11) :2526-2534