Classification of flat Lorentzian nilpotent Lie algebras

被引:1
|
作者
Bajo, Ignacio [1 ,4 ]
Benayadi, Said [2 ]
Lebzioui, Hicham [3 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada2, EI Telecomunicac, Vigo, Spain
[2] Univ Lorraine, CNRS, UFR MIM, Lab IECL,UMR 7502, Metz, France
[3] Univ Sultan Moulay Slimane, Ecole Super Technol Khenifra, Khenifra, Morocco
[4] EI Telecomunicac, Dept Matemat Aplicada 2, Vigo 36310, Spain
关键词
METRICS;
D O I
10.1112/blms.13047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete classification of flat Lorentzian nilpotent Lie algebras, this is to say of pseudo-Euclidean Lie algebras associated to nilpotent Lie groups endowed with a left-invariant Lorentzian metric of vanishing curvature. We prove that every such a Lie algebra is a direct sum of an indecomposable flat Lorentzian Lie algebra and an abelian Euclidean summand and show that, if h(2k+1) denotes the 2k+1-dimensional Heisenberg Lie algebra, then the only non-abelian Lie algebras admitting flat Lorentzian metrics which are indecomposable are h(3) and the semidirect products n(1)(k) = R(sic)(F1) h(2k+1) and n(2)(k)= R(sic)(F2) (h(2k+1) circle plus R) F-1,F-2. In all those cases we also find the equivalence classes of flat Lorentzian products.
引用
收藏
页码:2132 / 2149
页数:18
相关论文
共 50 条