Classification of flat Lorentzian nilpotent Lie algebras

被引:1
|
作者
Bajo, Ignacio [1 ,4 ]
Benayadi, Said [2 ]
Lebzioui, Hicham [3 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada2, EI Telecomunicac, Vigo, Spain
[2] Univ Lorraine, CNRS, UFR MIM, Lab IECL,UMR 7502, Metz, France
[3] Univ Sultan Moulay Slimane, Ecole Super Technol Khenifra, Khenifra, Morocco
[4] EI Telecomunicac, Dept Matemat Aplicada 2, Vigo 36310, Spain
关键词
METRICS;
D O I
10.1112/blms.13047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete classification of flat Lorentzian nilpotent Lie algebras, this is to say of pseudo-Euclidean Lie algebras associated to nilpotent Lie groups endowed with a left-invariant Lorentzian metric of vanishing curvature. We prove that every such a Lie algebra is a direct sum of an indecomposable flat Lorentzian Lie algebra and an abelian Euclidean summand and show that, if h(2k+1) denotes the 2k+1-dimensional Heisenberg Lie algebra, then the only non-abelian Lie algebras admitting flat Lorentzian metrics which are indecomposable are h(3) and the semidirect products n(1)(k) = R(sic)(F1) h(2k+1) and n(2)(k)= R(sic)(F2) (h(2k+1) circle plus R) F-1,F-2. In all those cases we also find the equivalence classes of flat Lorentzian products.
引用
收藏
页码:2132 / 2149
页数:18
相关论文
共 50 条
  • [1] Flat Nonunimodular Lorentzian Lie Algebras
    Boucetta, Mohamed
    Lebzioui, Hicham
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (10) : 4185 - 4195
  • [2] CLASSIFICATION OF NILPOTENT LIE-ALGEBRAS
    SKJELBRED, T
    SUND, T
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (05): : 241 - 242
  • [3] A classification of nilpotent compatible Lie algebras
    Ladra, Manuel
    da Cunha, Bernardo Leite
    Lopes, Samuel A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [4] On flat pseudo-Euclidean nilpotent Lie algebras
    Boucetta, Mohamed
    Lebzioui, Hicham
    JOURNAL OF ALGEBRA, 2019, 537 : 459 - 477
  • [5] The classification of nilpotent Lie-Yamaguti algebras
    Abdelwahab, Hani
    Barreiro, Elisabete
    Calderon, Antonio J.
    Ouaridi, Amir Fernandez
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 654 : 339 - 378
  • [6] The classification of complete Lie algebras with commutative nilpotent radical
    Jiang, CP
    Meng, DJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (01) : 15 - 23
  • [7] Classification of the Quasifiliform Nilpotent Lie Algebras of Dimension 9
    Perez, Mercedes
    Perez, Francisco P.
    Jimenez, Emilio
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [8] CLASSIFICATION OF NILPOTENT ELEMENTS OF GRADUATED LIE-ALGEBRAS
    VINBERG, EB
    DOKLADY AKADEMII NAUK SSSR, 1975, 225 (04): : 745 - 748
  • [9] The algebraic and geometric classification of nilpotent binary Lie algebras
    Abdelwahab, Hani
    Jesus Calderon, Antonio
    Kaygorodov, Ivan
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (06) : 1113 - 1129
  • [10] CLASSIFICATION OF PAIR OF NILPOTENT LIE ALGEBRAS BY THEIR SCHUR MULTIPLIERS
    Khamseh, Elaheh
    Niri, Somaieh Alizadeh
    MATHEMATICAL REPORTS, 2018, 20 (02): : 177 - 185