Co-doped MnFe2O4 nanoparticles: Magnetic anisotropy and interparticle interactions

被引:0
|
作者
Aslibeiki B. [1 ]
Kameli P. [2 ]
Salamati H. [2 ]
Concas G. [3 ]
Fernandez M.S. [4 ,5 ]
Talone A. [4 ,6 ]
Muscas G. [7 ]
Peddis D. [6 ,8 ]
机构
[1] Department of Physics, University of Tabriz, Tabriz
[2] Department of Physics, Isfahan University of Technology, Isfahan
[3] Dipartimento di Fisica, Università di Cagliari, S.P. Monserrato-Sestu km 0,700, Monserrato (CA)
[4] Dipartimento di Scienze, Università degli Studi Roma Tre, via della vasca navale, 84, Roma
[5] Department of Physics, University of Oviedo, Campus de Viesques, Gijón
[6] Istituto di Struttura della Materia-CNR, Monterotondo Scalo (RM)
[7] Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala
[8] Department of Chemistry and Industrial Chemistry (DCIC), University of Genova, Genova
基金
欧盟地平线“2020”;
关键词
Cobalt doping; Collective dynamics; Ferrite nanoparticles; Interparticle interactions; Magnetic properties;
D O I
10.3762/BJNANO.10.86
中图分类号
学科分类号
摘要
The effect of cobalt doping on the magnetic properties of Mn1-xCoxFe2O4 nanoparticles was investigated. All samples consist of ensembles of nanoparticles with a spherical shape and average diameter of about 10 nm, showing small structural changes due to the substitution. Besides having the same morpho-structural properties, the effect of the chemical composition, i.e., the amount of Co doping, produces marked differences on the magnetic properties, especially on the magnetic anisotropy, with evident large changes in the coercive field. Moreover, Co substitution has a profound effect on the interparticle interactions, too. A dipolar-based interaction regime is detected for all samples; in addition, the intensity of the interactions shows a possible relation with the single particle anisotropy. Finally, the sample with the strongest interaction regime shows a superspin glass state confirmed by memory effect dynamics. © 2019 Aslibeiki et al.
引用
收藏
页码:856 / 865
页数:9
相关论文
empty
未找到相关数据