The Bessel-Clifford Function Associated to the Cayley-Laplace Operator

被引:0
作者
Eelbode, David [1 ]
机构
[1] Univ Antwerp, Dept Math, Midddelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Cayley-Laplace operator; Matrix variables; Special functions; Binomial polynomials; Nayarana numbers; GEOMETRY; SPACE;
D O I
10.1007/s00006-024-01351-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the Cayley-Laplace operator Delta xu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{xu}$$\end{document} is considered, a rotationally invariant differential operator which can be seen as a generalisation of the classical Laplace operator for functions depending on wedge variables Xab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{ab}$$\end{document} (the minors of a matrix variable). We will show that the Bessel-Clifford function appears naturally in the framework of two-wedge variables, and explain how this function somehow plays the role of the exponential function in the framework of Grassmannians. This will be used to obtain a generalisation of the series expansion for the Newtonian potential, and to investigate a new kind of binomial polynomials related to Nayarana numbers.
引用
收藏
页数:20
相关论文
共 15 条
[1]  
Barry P., 2011, J. Integer Seq., V14
[2]   Pizzetti formula on the Grassmannian of 2-planes [J].
Eelbode, D. ;
Homma, Y. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 58 (03) :325-350
[3]   Higher spin generalisation of Fueter's theorem [J].
Eelbode, David ;
Janssens, Tim .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) :4887-4905
[4]  
Fulton W, 1997, YOUNG TABLEAUX APPL
[5]  
Gilbert J., 1991, Clifford algebras and Dirac operators in harmonic analysis
[6]  
Goodman R., 2003, REPRESENTATIONS INVA
[7]   DYNAMICAL SYMMETRIES IN A SPHERICAL GEOMETRY-I [J].
HIGGS, PW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (03) :309-323
[8]  
Howe R., 1989, J AM MATH SOC, V2, P535, DOI [10.1090/S0894-0347-1989-0985172-6, DOI 10.1090/S0894-0347-1989-0985172-6]
[9]   SPHERICAL HARMONICS ON GRASSMANNIANS [J].
Howe, Roger ;
Lee, Soo Teck .
COLLOQUIUM MATHEMATICUM, 2010, 118 (01) :349-364
[10]   The Cayley-Laplace differential operator on the space of rectangular matrices [J].
Khekalo, SP .
IZVESTIYA MATHEMATICS, 2005, 69 (01) :191-219