Nonintrusive Parameter Identification of IoT-Embedded Isotropic PMSM Drives

被引:11
作者
Brescia, Elia [1 ]
Massenio, Paolo Roberto [1 ]
Nardo, Mauro Di [2 ]
Cascella, Giuseppe Leonardo [1 ]
Gerada, Chris [2 ]
Cupertino, Francesco [1 ]
机构
[1] Politecn Bari, Dept Elect & Informat Engn, I-70125 Bari, Italy
[2] Univ Nottingham, Power Elect & Machine Control Grp, Nottingham NG7 2GT, England
关键词
Parameter estimation; Voltage measurement; Steady-state; Rotors; Stators; Resistance; Motor drives; Actuation delay compensation; inverter nonlinearity; parameter identification; permanent magnet; rank deficiency; synchronous machines; MAGNET SYNCHRONOUS MACHINES; MULTIPARAMETER ESTIMATION; MOTORS;
D O I
10.1109/JESTPE.2023.3292526
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a nonintrusive parameter identification procedure suitable for Internet-of-Things (IoT)-embedded isotropic permanent magnet synchronous machines (PMSMs). The method is designed for scenarios where only measurements collected without additional sensors, dedicated tests, or signal injection from in- service off-the-shelves motor drives are available. After automatic detection of the steady-state operating conditions (OCs) defined by the triplet current-speed-temperature, the rotor flux linkage, the stator resistance, the inductance, and the inverter distorted voltage term are estimated using two operating points. Particular emphasis is placed in defining the criteria of selecting these two optimal OCs to minimize the estimation errors. The latter are due to the inevitable difference between the parameters in different operating points. As a vessel to investigate the effectiveness of the proposed parameter identification, experimental and simulation tests carried out on a high-speed PMSM drive have been used for validation purpose. The proposed method is also compared with the existing methods from the literature to demonstrate its superiority in the considered scenario.
引用
收藏
页码:5195 / 5207
页数:13
相关论文
共 33 条
[1]   Experimental Identification of the Magnetic Model of Synchronous Machines [J].
Armando, Eric ;
Bojoi, Radu Iustin ;
Guglielmi, Paolo ;
Pellegrino, Gianmario ;
Pastorelli, Michele .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2013, 49 (05) :2116-2125
[2]   Online Identification of PMSM Parameters: Parameter Identifiability and Estimator Comparative Study [J].
Boileau, Thierry ;
Leboeuf, Nicolas ;
Nahid-Mobarakeh, Babak ;
Meibody-Tabar, Farid .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2011, 47 (04) :1944-1957
[3]   Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources [J].
Brescia, Elia ;
Costantino, Donatello ;
Marzo, Federico ;
Massenio, Paolo Roberto ;
Cascella, Giuseppe Leonardo ;
Naso, David .
SENSORS, 2021, 21 (14)
[4]   PMSM Parameter Estimation for Sensorless FOC Based on Differential Power Factor [J].
Candelo-Zuluaga, Carlos ;
Riba, Jordi-Roger ;
Garcia, Antoni .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[5]   From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis [J].
Dai, Xuewu ;
Gao, Zhiwei .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) :2226-2238
[6]   A cloud-based condition monitoring system for fault detection in rotating machines using PROFINET process data [J].
Dias, Andre Luis ;
Turcato, Afonso Celso ;
Sestito, Guilherme Serpa ;
Brandao, Dennis ;
Nicoletti, Rodrigo .
COMPUTERS IN INDUSTRY, 2021, 126
[7]   Multi-Parameter Estimation of PMSM Using Differential Model With Core Loss Compensation [J].
Feng, Guodong ;
Lai, Chunyan ;
Tan, Xiaojun ;
Peng, Weiwen ;
Kar, Narayan C. .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (01) :1105-1115
[8]   Permanent Magnet Temperature Estimation in PM Synchronous Motors Using Low-Cost Hall Effect Sensors [J].
Fernandez, Daniel ;
Hyun, Doosoo ;
Park, Yonghyun ;
Diaz Reigosa, David ;
Lee, Sang Bin ;
Lee, Dong-Myung ;
Briz, Fernando .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (05) :4515-4525
[9]  
Floris A., 2022, PROC INT C ELECT MAC, P935, DOI [10.1109/ICEM51905.2022.9910751, DOI 10.1109/ICEM51905.2022.9910751]
[10]  
Floris A, 2020, 2020 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE)