Physically-Interpretable Data Augmentation for Multi-Range Hand Gesture Recognition Using FMCW Radar Time Series

被引:4
作者
Hassab, Youcef [1 ,2 ]
Stadelmayer, Thomas [3 ]
Lurz, Fabian [2 ]
机构
[1] Hamburg Univ Technol, Inst Electromagnet Theory, D-21073 Hamburg, Germany
[2] Hamburg Univ Technol, Inst High Frequency Technol, D-21073 Hamburg, Germany
[3] Infineon Technol AG, D-85579 Neubiberg, Germany
来源
IEEE TRANSACTIONS ON RADAR SYSTEMS | 2023年 / 1卷
关键词
Radar; Chirp; Time series analysis; Data augmentation; Thumb; Recording; Azimuth; Hand gesture recognition; machine learning; light-weight processing; data augmentation; InceptionTime; FMCW radar;
D O I
10.1109/TRS.2023.3320869
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a robust ac hgr system using a ac fmcw radar and InceptionTime networks on data augmented time series is implemented. The paper proposes multiple data augmentation techniques for radar-based ac hgr. Since a realistic manipulation of raw radar data frames or even range-Doppler maps is a very complex challenge, we instead propose data manipulation on physically interpretable time series of range, azimuth and elevation angles extracted from the data. Due to working on physically interpretable time series data, we can on the one hand make use of well explored existing augmentation techniques for time series and on the other hand do use-case specific interpretable augmentations, such as simulating a different aspect angle or range. To investigate the system, a data recording process covering multiple ranges, angles and types of gestures is carried out. The gain in accuracy from the proposed data augmentation scheme amounts to more than 4 percentage points to reach a global prediction accuracy higher than 95% for a very diverse dataset.
引用
收藏
页码:571 / 582
页数:12
相关论文
共 31 条
[1]   Hand Gestures Recognition Using Radar Sensors for Human-Computer-Interaction: A Review [J].
Ahmed, Shahzad ;
Kallu, Karam Dad ;
Ahmed, Sarfaraz ;
Cho, Sung Ho .
REMOTE SENSING, 2021, 13 (03) :1-24
[2]   Hand Gesture Recognition Using an IR-UWB Radar with an Inception Module-Based Classifier [J].
Ahmed, Shahzad ;
Cho, Sung Ho .
SENSORS, 2020, 20 (02)
[3]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[4]  
Al-Janabi S., 2019, REVISTA AUS J., P368
[5]   Synthesis of Micro-Doppler Signatures of Human Activities From Different Aspect Angles Using Generative Adversarial Networks [J].
Alnujaim, Ibrahim ;
Ram, Shobha Sundar ;
Oh, Daegun ;
Kim, Youngwook .
IEEE ACCESS, 2021, 9 :46422-46429
[6]   Generative Adversarial Networks for Classification of Micro-Doppler Signatures of Human Activity [J].
Alnujaim, Ibrahim ;
Oh, Daegun ;
Kim, Youngwook .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) :396-400
[7]  
이도엽, 2016, [Journal of Internet Computing and Services, 인터넷정보학회논문지], V17, P29
[8]   Motion Classification Using Kinematically Sifted ACGAN-Synthesized Radar Micro-Doppler Signatures [J].
Erol, Baris ;
Gurbuz, Sevgi Zubyede ;
Amin, Moeness G. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (04) :3197-3213
[9]   InceptionTime: Finding AlexNet for time series classification [J].
Fawaz, Hassan Ismail ;
Lucas, Benjamin ;
Forestier, Germain ;
Pelletier, Charlotte ;
Schmidt, Daniel F. ;
Weber, Jonathan ;
Webb, Geoffrey, I ;
Idoumghar, Lhassane ;
Muller, Pierre-Alain ;
Petitjean, Francois .
DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (06) :1936-1962
[10]   Generating synthetic time series to augment sparse datasets [J].
Forestier, Germain ;
Petitjean, Francois ;
Dau, Hoang Anh ;
Webb, Geoffrey I. ;
Keogh, Eamonn .
2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, :865-870