Best possible upper bounds on the restrained domination number of cubic graphs

被引:0
作者
Bresar, Bostjan [1 ,2 ]
Henning, Michael A. [3 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Dept Math & Comp Sci, Maribor, Slovenia
[2] Inst Math Phys & Mech, Dept Math, Ljubljana, Slovenia
[3] Univ Johannesburg, Dept Math & Appl Math, Auckland Pk, South Africa
基金
芬兰科学院; 新加坡国家研究基金会;
关键词
cubic graphs; domination; restrained domination; INDEPENDENT DOMINATION;
D O I
10.1002/jgt.23095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A dominating set in a graph G $G$ is a set S $S$ of vertices such that every vertex in V(G)⧹S $V(G)\setminus S$ is adjacent to a vertex in S $S$. A restrained dominating set of G $G$ is a dominating set S $S$ with the additional restraint that the graph G-S $G-S$ obtained by removing all vertices in S $S$ is isolate-free. The domination number gamma(G) $\gamma (G)$ and the restrained domination number gamma r(G) ${\gamma }_{r}(G)$ are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of G $G$. Let G $G$ be a cubic graph of order n $n$. A classical result of Reed states that gamma(G)<= 38n $\gamma (G)\le \frac{3}{8}n$, and this bound is best possible. To determine the best possible upper bound on the restrained domination number of G $G$ is more challenging, and we prove that gamma r(G)<= 25n ${\gamma }_{r}(G)\le \frac{2}{5}n$.
引用
收藏
页码:763 / 815
页数:53
相关论文
共 26 条
[1]   An Improved Upper Bound on the Independent Domination Number in Cubic Graphs of Girth at Least Six [J].
Abrishami, Gholamreza ;
Henning, Michael A. .
GRAPHS AND COMBINATORICS, 2022, 38 (02)
[2]  
Anderson S. E., 2022, POWER DOMINATION CUB, V345
[3]  
Blank M.M., 1973, PRIKL MAT PROGRAMMIR, P3
[4]   Independent Domination in Bipartite Cubic Graphs [J].
Brause, Christoph ;
Henning, Michael A. .
GRAPHS AND COMBINATORICS, 2019, 35 (04) :881-912
[5]   Total Domination Versus Domination in Cubic Graphs [J].
Cyman, Joanna ;
Dettlaff, Magda ;
Henning, Michael A. ;
Lemanska, Magdalena ;
Raczek, Joanna .
GRAPHS AND COMBINATORICS, 2018, 34 (01) :261-276
[6]   Total forcing versus total domination in cubic graphs [J].
Dayila, Randy ;
Henning, Michael A. .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 354 :385-395
[7]  
Domke G., 2000, J COMBIN MATH COMBIN, V35, P239
[8]   Restrained domination in graphs [J].
Domke, GS ;
Hattingh, JH ;
Hedetniemi, ST ;
Laskar, RC ;
Markus, LR .
DISCRETE MATHEMATICS, 1999, 203 (1-3) :61-69
[9]   Independent Domination in Cubic Graphs [J].
Dorbec, Paul ;
Henning, Michael A. ;
Montassier, Mickael ;
Southey, Justin .
JOURNAL OF GRAPH THEORY, 2015, 80 (04) :329-349
[10]   A Characterization of Cubic Graphs with Paired-Domination Number Three-Fifths Their Order [J].
Goddard, Wayne ;
Henning, Michael A. .
GRAPHS AND COMBINATORICS, 2009, 25 (05) :675-692