Sobolev orthogonal polynomials, Gauss-Borel factorization and perturbations
被引:0
作者:
Ariznabarreta, Gerardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Complutense, Fac Fis, Dept Fis Teor, Madrid 28040, SpainUniv Complutense, Fac Fis, Dept Fis Teor, Madrid 28040, Spain
Ariznabarreta, Gerardo
[1
]
Manas, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Complutense, Fac Fis, Dept Fis Teor, Madrid 28040, Spain
Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, SpainUniv Complutense, Fac Fis, Dept Fis Teor, Madrid 28040, Spain
Manas, Manuel
[1
,2
]
Tempesta, Piergiulio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Complutense, Fac Fis, Dept Fis Teor, Madrid 28040, Spain
Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, SpainUniv Complutense, Fac Fis, Dept Fis Teor, Madrid 28040, Spain
Tempesta, Piergiulio
[1
,2
]
机构:
[1] Univ Complutense, Fac Fis, Dept Fis Teor, Madrid 28040, Spain
[2] Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
33C45;
37L60;
42C05;
DIFFERENTIAL-EQUATIONS;
RECURRENCE RELATIONS;
MOMENT PROBLEM;
ASYMPTOTICS;
RESPECT;
D O I:
10.1007/s13324-024-00883-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We present a comprehensive class of Sobolev bi-orthogonal polynomial sequences, which emerge from a moment matrix with an LU factorization. These sequences are associated with a measure matrix defining the Sobolev bilinear form. Additionally, we develop a theory of deformations for Sobolev bilinear forms, focusing on polynomial deformations of the measure matrix. Notably, we introduce the concepts of Christoffel-Sobolev and Geronimus-Sobolev transformations. The connection formulas between these newly introduced polynomial sequences and existing ones are explicitly determined.