Sobolev orthogonal polynomials, Gauss-Borel factorization and perturbations

被引:0
作者
Ariznabarreta, Gerardo [1 ]
Manas, Manuel [1 ,2 ]
Tempesta, Piergiulio [1 ,2 ]
机构
[1] Univ Complutense, Fac Fis, Dept Fis Teor, Madrid 28040, Spain
[2] Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
33C45; 37L60; 42C05; DIFFERENTIAL-EQUATIONS; RECURRENCE RELATIONS; MOMENT PROBLEM; ASYMPTOTICS; RESPECT;
D O I
10.1007/s13324-024-00883-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a comprehensive class of Sobolev bi-orthogonal polynomial sequences, which emerge from a moment matrix with an LU factorization. These sequences are associated with a measure matrix defining the Sobolev bilinear form. Additionally, we develop a theory of deformations for Sobolev bilinear forms, focusing on polynomial deformations of the measure matrix. Notably, we introduce the concepts of Christoffel-Sobolev and Geronimus-Sobolev transformations. The connection formulas between these newly introduced polynomial sequences and existing ones are explicitly determined.
引用
收藏
页数:44
相关论文
共 34 条
  • [1] SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS - THE NONDIAGONAL CASE
    ALFARO, M
    MARCELLAN, F
    REZOLA, ML
    RONVEAUX, A
    [J]. JOURNAL OF APPROXIMATION THEORY, 1995, 83 (02) : 266 - 287
  • [2] Althammer P., 1962, J. Reine Angew. Math, V211, P192, DOI [10.1515/crll.1962.211.192, DOI 10.1515/CRLL.1962.211.192]
  • [3] Christoffel Transformations for Matrix Orthogonal Polynomials in the Real Line and the non-Abelian 2D Toda Lattice Hierarchy
    Alvarez-Fernandez, Carlos
    Ariznabarreta, Gerardo
    Carlos Garcia-Ardila, Juan
    Manas, Manuel
    Marcellan, Francisco
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (05) : 1285 - 1341
  • [4] Ariznabarreta G, 2023, Arxiv, DOI arXiv:2312.05137
  • [5] Matrix biorthogonal polynomials on the real line: Geronimus transformations
    Ariznabarreta, Gerardo
    Garcia-Ardila, Juan C.
    Manas, Manuel
    Marcellan, Francisco
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (02)
  • [6] Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations
    Ariznabarreta, Gerardo
    Garcia-Ardila, Juan C.
    Manas, Manuel
    Marcellan, Francisco
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (20)
  • [7] Matrix orthogonal Laurent polynomials on the unit circle and Toda type integrable systems
    Ariznabarreta, Gerardo
    Manas, Manuel
    [J]. ADVANCES IN MATHEMATICS, 2014, 264 : 396 - 463
  • [8] Christoffel EB., 1858, J Reine Angew Math, V55, P61
  • [9] Fourier series of Jacobi-Sobolev polynomials
    Ciaurri, Oscar
    Minguez Ceniceros, Judit
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (04) : 334 - 346
  • [10] ORTHOGONAL MATRIX POLYNOMIALS AND HIGHER-ORDER RECURRENCE RELATIONS
    DURAN, AJ
    VANASSCHE, W
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 219 : 261 - 280