Using machine learning for early detection of chronic obstructive pulmonary disease: a narrative review

被引:7
作者
Shen, Xueting [1 ]
Liu, Huanbing [1 ,2 ]
机构
[1] Nanchang Univ, Dept Gen Surg, Affiliated Hosp 1, Nanchang 330000, Peoples R China
[2] Nanchang Univ, Affiliated Hosp 1, Dept Gen Practice, Nanchang 330000, Peoples R China
关键词
Chronic obstructive pulmonary disease; Machine learning; Early screening; DISCRIMINATIVE ACCURACY; ARTIFICIAL-INTELLIGENCE; IDENTIFYING PATIENTS; COPD; DIAGNOSIS; CARE; QUESTIONNAIRE; VALIDATION; PATHOLOGY; ASTHMA;
D O I
10.1186/s12931-024-02960-6
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease and ranks third in global mortality rates, imposing a significant burden on patients and society. This review looks at recent research, both domestically and abroad, on the application of machine learning (ML) for early COPD screening. The review discusses the practical application, key optimization points, and prospects of ML techniques in early COPD screening. The aim is to establish a scientific foundation and reference framework for future research and the development of screening strategies.
引用
收藏
页数:9
相关论文
共 68 条
[31]   A Case-Finding Clinical Decision Support System to Identify Subjects with Chronic Obstructive Pulmonary Disease Based on Public Health Data [J].
Lin, Xinshan ;
Lei, Yi ;
Chen, Jun ;
Xing, Zhihui ;
Yang, Ting ;
Wang, Qing ;
Wang, Chen .
TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (03) :525-540
[32]   What can we learn about COPD from impulse oscillometry? [J].
Lipworth, Brian J. ;
Jabbal, Sunny .
RESPIRATORY MEDICINE, 2018, 139 :106-109
[33]   Undiagnosed Obstructive Lung Disease in the United States Associated Factors and Long-term Mortality [J].
Martinez, Carlos H. ;
Mannino, David M. ;
Jaimes, Fabian A. ;
Curtis, Jeffrey L. ;
Han, MeiLan K. ;
Hansel, Nadia N. ;
Diaz, Alejandro A. .
ANNALS OF THE AMERICAN THORACIC SOCIETY, 2015, 12 (12) :1788-1795
[34]   Discriminative Accuracy of the CAPTURE Tool for Identifying Chronic Obstructive Pulmonary Disease in US Primary Care Settings [J].
Martinez, Fernando J. ;
Han, MeiLan K. ;
Lopez, Camden ;
Murray, Susan ;
Mannino, David ;
Anderson, Stacey ;
Brown, Randall ;
Dolor, Rowena ;
Elder, Nancy ;
Joo, Min ;
Khan, Irfan ;
Knox, Lyndee M. ;
Meldrum, Catherine ;
Peters, Elizabeth ;
Spino, Cathie ;
Tapp, Hazel ;
Thomashow, Byron ;
Zittleman, Linda ;
Make, Barry ;
Yawn, Barbara P. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2023, 329 (06) :490-501
[35]   A New Approach for Identifying Patients with Undiagnosed Chronic Obstructive Pulmonary Disease [J].
Martinez, Fernando J. ;
Mannino, David ;
Leidy, Nancy Kline ;
Malley, Karen G. ;
Bacci, Elizabeth D. ;
Barr, R. Graham ;
Bowler, Russ P. ;
Han, MeiLan K. ;
Houfek, Julia F. ;
Make, Barry ;
Meldrum, Catherine A. ;
Rennard, Stephen ;
Thomashow, Byron ;
Walsh, John ;
Yawn, Barbara P. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195 (06) :748-756
[36]   Development and Initial Validation of a Self-Scored COPD Population Screener Questionnaire (COPD-PS) [J].
Martinez, Fernando J. ;
Raczek, Anastasia E. ;
Seifer, Frederic D. ;
Conoscenti, Craig S. ;
Curtice, Tammy G. ;
D'Eletto, Thomas ;
Cote, Claudia ;
Hawkins, Clare ;
Phillips, Amy L. .
COPD-JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2008, 5 (02) :85-95
[37]   Screening tests: a review with examples [J].
Maxim, L. Daniel ;
Niebo, Ron ;
Utell, Mark J. .
INHALATION TOXICOLOGY, 2014, 26 (13) :811-828
[38]   CT Imaging-Based Low-Attenuation Super Clusters in Three Dimensions and the Progression of Emphysema [J].
Mondonedo, Jarred R. ;
Sato, Susumu ;
Oguma, Tsuyoshi ;
Muro, Shigeo ;
Sonnenberg, Adam H. ;
Zeldich, Dean ;
Parameswaran, Harikrishnan ;
Hirai, Toyohiro ;
Suki, Bela .
CHEST, 2019, 155 (01) :79-87
[39]   Machine Learning Methods for the Diagnosis of Chronic Obstructive Pulmonary Disease in Healthy Subjects: Retrospective Observational Cohort Study [J].
Muro, Shigeo ;
Ishida, Masato ;
Horie, Yoshiharu ;
Takeuchi, Wataru ;
Nakagawa, Shunki ;
Ban, Hideyuki ;
Nakagawa, Tohru ;
Kitamura, Tetsuhisa .
JMIR MEDICAL INFORMATICS, 2021, 9 (07)
[40]   Receiver operating characteristic curve: overview and practical use for clinicians [J].
Nahm, Francis Sahngun .
KOREAN JOURNAL OF ANESTHESIOLOGY, 2022, 75 (01) :25-36