Thermal Earth model for the conterminous United States using an interpolative physics-informed graph neural network

被引:2
作者
Aljubran, Mohammad J. [1 ]
Horne, Roland N. [1 ]
机构
[1] Stanford Univ, Energy Sci & Engn, Bldg 367, Stanford, CA 94305 USA
来源
GEOTHERMAL ENERGY | 2024年 / 12卷 / 01期
关键词
Temperature-at-depth; Heat flow; Rock thermal conductivity; InterPIGNN; Physics-informed; Graph neural networks; HEAT-FLOW; FLUID-FLOW; TEMPERATURE; SUBSURFACE;
D O I
10.1186/s40517-024-00304-7
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents a data-driven spatial interpolation algorithm based on physics-informed graph neural networks used to develop a thermal Earth model for the conterminous United States. The model was trained to approximately satisfy Fourier's Law of conductive heat transfer by simultaneously predicting subsurface temperature, surface heat flow, and rock thermal conductivity. In addition to bottomhole temperature measurements, we incorporated other spatial and physical quantities as model inputs, such as depth, geographic coordinates, elevation, sediment thickness, magnetic anomaly, gravity anomaly, gamma-ray flux of radioactive elements, seismicity, electrical conductivity, and proximity to faults and volcanoes. With a spatial resolution of 18km2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$18 \ km<^>2$$\end{document} per grid cell, we predicted heat flow at surface as well as temperature and rock thermal conductivity across depths of 0-7km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0-7 \ km$$\end{document} at an interval of 1km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \ km$$\end{document}. Our model showed temperature, surface heat flow and thermal conductivity mean absolute errors of 6.4 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6.4<^>\circ C$$\end{document}, 6.9mW/m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6.9 \ mW/m<^>2$$\end{document} and 0.04W/m-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.04 \ W/m-K$$\end{document}, respectively. This thorough modeling of the Earth's thermal processes is crucial to understanding subsurface phenomena and exploiting natural underground resources. Our thermal Earth model is available as web application at https://stm.stanford.edu, feature layers on ArcGIS at https://arcg.is/nLzzT0, and tabulated data on the Geothermal Data Repository at https://gdr.openei.org/submissions/1592.
引用
收藏
页数:48
相关论文
共 134 条
  • [51] Gal Y., 2016, Uncertainty in deep learning
  • [52] Gal Y, 2016, PR MACH LEARN RES, V48
  • [53] The Perfect Match: 3D Point Cloud Matching with Smoothed Densities
    Gojcic, Zan
    Zhou, Caifa
    Wegner, Jan D.
    Wieser, Andreas
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5540 - 5549
  • [54] Variations in Seismic Wave Speed and VP/VS Ratio in the North American Lithosphere
    Golos, Eva M.
    Fang, Hongjian
    van der Hilst, Robert D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (12)
  • [55] New Constraints on the Thermal Conductivity of the Upper Mantle From Numerical Models of Radiation Transport
    Grose, Christopher J.
    Afonso, Juan C.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2019, 20 (05) : 2378 - 2394
  • [56] Gubbins D., 2007, Encyclopedia of Geomagnetism and paleomagnetism, P1054, DOI DOI 10.1007/978-1-4020-4423-6
  • [57] Han T, 2024, Geophys J Int, P162
  • [58] Harrison WE, 1983, Technical report
  • [59] Harrison WE, 1982, Technical report
  • [60] Biological activity in the deep subsurface and the origin of heavy oil
    Head, IM
    Jones, DM
    Larter, SR
    [J]. NATURE, 2003, 426 (6964) : 344 - 352