Highly thermal conductive phase change materials enabled by CNTs-modified PVA aerogel for solar energy storage and thermal management of electronic components

被引:18
作者
Luo, Wenxing [1 ]
Luo, Lixiang [1 ]
Ma, Yan [1 ]
Liu, Yichi [1 ]
Xie, Yuqiong [1 ]
Hu, Xiaowu [1 ]
Chen, Wenjing [2 ]
Jiang, Xiongxin [1 ]
机构
[1] Nanchang Univ, Sch Adv Mfg, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change materials; PVA aerogel; Carbon nanotubes (CNTs); Thermal management of electronic components; Photothermal conversion; CONVERSION;
D O I
10.1016/j.est.2024.111583
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Phase change materials (PCM) hold significant promise for applications in thermal management of electronic components and solar energy storage. However, their widespread application has been hindered by limited thermal conductivity and the risk of liquid leakage. In this study, we developed shape-stabilized composite PCM by encapsulating polyethylene glycol (PEG) within Polyvinyl alcohol (PVA) aerogel. To enhance the performance, we incorporated different concentrations of carbon nanotubes (CNTs) into the PVA aerogel matrix. Our experimental results show that the PEG/PC20 composite PCM has an impressive thermal conductivity of 0.568 W/m & sdot;K. This improvement can be attributed to the efficient thermal conductivity network created by the CNTs. In addition to its remarkable structural stability, thermal reliability, and shape stability, PEG/PC20 also exhibits exceptional thermal storage capacity and photothermal conversion capability. Moreover, PEG/PC20 demonstrates outstanding temperature control in the thermal management of electronic components, significantly prolonging the time required to reach the peak temperature of an electric heater by a factor of 5. Consequently, PEG/PC20 exhibits tremendous potential for solar energy storage and the efficient thermal management of electronic components.
引用
收藏
页数:13
相关论文
共 50 条
[11]   Thermal analysis and optimization of metal foam PCM-based heat sink for thermal management of electronic devices [J].
Hu, Xusheng ;
Gong, Xiaolu ;
Zhu, Feng ;
Xing, Xiaodong ;
Li, Zhongru ;
Zhang, Xiaoxia .
RENEWABLE ENERGY, 2023, 212 :227-237
[12]   Phase-Changing Microcapsules Incorporated with Black Phosphorus for Efficient Solar Energy Storage [J].
Huang, Hao ;
Shi, Tongyu ;
He, Rui ;
Wang, Jiahong ;
Chu, Paul K. ;
Yu, Xue-Feng .
ADVANCED SCIENCE, 2020, 7 (23)
[13]   Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network [J].
Jiang, Zhao ;
Ouyang, Ting ;
Yang, Yang ;
Chen, Lei ;
Fan, Xiaohua ;
Chen, Yunbo ;
Li, Weiwei ;
Fei, Youqing .
MATERIALS & DESIGN, 2018, 143 :177-184
[14]   Fe3O4-Functionalized Κ-Carrageenan/Melanin Hybrid Aerogel- Supported Form-Stable Phase-Change Composites with Excellent Solar/Magnetic-Thermal Conversion Efficiency and Enhanced Thermal Conductivity [J].
Jin, Linzhao ;
Han, Qiaoqiao ;
Wang, Jiuao ;
Wang, Shuang ;
Wang, Haibo ;
Cheng, Xu ;
Du, Xiaosheng ;
Du, Zongliang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (02) :649-659
[15]   Effects of the PCM layer position on the comprehensive performance of a built-middle PV-Trombe wall system for building application in the heating season [J].
Ke, Wei ;
Ji, Jie ;
Zhang, Chengyan ;
Xie, Hao ;
Tang, Yayun ;
Wang, Chuyao .
ENERGY, 2023, 267
[16]   Shape stabilized three-dimensional porous SiC-based phase change materials for thermal management of electronic components [J].
Kong, Xiangfei ;
Nie, Ruiming ;
Yuan, Jianjuan .
CHEMICAL ENGINEERING JOURNAL, 2023, 462
[17]   Enhanced thermal performance of phase-change materials supported by mesoporous silica modified with polydopamine/nano-metal particles for thermal energy storage [J].
Li, Jiayin ;
Hu, Xiaowu ;
Zhang, Chuge ;
Luo, Wenxing ;
Jiang, Xiongxin .
RENEWABLE ENERGY, 2021, 178 (178) :118-127
[18]   Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module [J].
Li, Yuming ;
Wang, Tingyu ;
Li, Xinxi ;
Zhang, Guoqing ;
Chen, Kai ;
Yang, Wensheng .
APPLIED ENERGY, 2022, 327
[19]   Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocellulose-Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor [J].
Liu, Huayu ;
Xu, Ting ;
Cai, Chenyang ;
Liu, Kun ;
Liu, Wei ;
Zhang, Meng ;
Du, Haishun ;
Si, Chuanling ;
Zhang, Kai .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (26)
[20]   Form-stable phase change materials based on graphene-doped PVA aerogel achieving effective solar energy photothermal conversion and storage [J].
Luo, Lixiang ;
Luo, Wenxing ;
Chen, Wenjing ;
Hu, Xiaowu ;
Ma, Yan ;
Xiao, Shikun ;
Li, Qinglin ;
Jiang, Xiongxin .
SOLAR ENERGY, 2023, 255 :146-156