Global convergence in terrestrial gross primary production response to atmospheric vapor pressure deficit

被引:1
|
作者
Huang, Chao [1 ,2 ]
Huang, Jingfeng [3 ,4 ]
Xiao, Jingfeng [5 ]
Li, Xing [6 ]
He, Hong S. [7 ]
Liang, Yu [2 ]
Chen, Fusheng [1 ]
Tian, Hanqin [8 ]
机构
[1] Jiangxi Agr Univ, Coll Forestry, Key Lab Natl Forestry & Grassland Adm Forest Ecosy, Nanchang 330045, Peoples R China
[2] Chinese Acad Sci, CAS Key Lab Forest Ecol & Management, Inst Appl Ecol, Shenyang 110016, Peoples R China
[3] Zhejiang Univ, Inst Appl Remote Sensing & Informat Technol, Coll Environm & Resource Sci, Hangzhou 310058, Peoples R China
[4] Zhejiang Univ, Key Lab Agr Remote Sensing & Informat Syst, Hangzhou 310058, Zhejiang, Peoples R China
[5] Univ New Hampshire, Earth Syst Res Ctr, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
[6] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul 08826, South Korea
[7] Univ Missouri, Sch Nat Resources, 203 ABNR Bldg, Columbia, MO 65211 USA
[8] Boston Coll, Schiller Inst Integrated Sci & Soc, Dept Earth & Environm Sci, Chestnut Hill, MA 02467 USA
关键词
atmospheric water demands; soil moisture; stomatal conductance; photosynthesis; climate warming; WATER-USE EFFICIENCY; CO2; FERTILIZATION; STOMATAL REGULATION; FOREST; DROUGHT; TRANSPIRATION; CONDUCTANCE; VARIABILITY; GRASSLANDS; DEMAND;
D O I
10.1007/s11427-023-2475-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atmospheric vapor pressure deficit (VPD) increases with climate warming and may limit plant growth. However, gross primary production (GPP) responses to VPD remain a mystery, offering a significant source of uncertainty in the estimation of global terrestrial ecosystems carbon dynamics. In this study, in-situ measurements, satellite-derived data, and Earth System Models (ESMs) simulations were analysed to show that the GPP of most ecosystems has a similar threshold in response to VPD: first increasing and then declining. When VPD exceeds these thresholds, atmospheric drought stress reduces soil moisture and stomatal conductance, thereby decreasing the productivity of terrestrial ecosystems. Current ESMs underscore CO2 fertilization effects but predict significant GPP decline in low-latitude ecosystems when VPD exceeds the thresholds. These results emphasize the impacts of climate warming on VPD and propose limitations to future ecosystems productivity caused by increased atmospheric water demand. Incorporating VPD, soil moisture, and canopy conductance interactions into ESMs enhances the prediction of terrestrial ecosystem responses to climate change.
引用
收藏
页码:2016 / 2025
页数:10
相关论文
共 50 条
  • [1] Global convergence in terrestrial gross primary production response to atmospheric vapor pressure deficit
    Chao Huang
    Jingfeng Huang
    Jingfeng Xiao
    Xing Li
    Hong SHe
    Yu Liang
    Fusheng Chen
    Hanqin Tian
    ScienceChina(LifeSciences), 2024, 67 (09) : 2016 - 2025
  • [2] Large historical growth in global terrestrial gross primary production
    Campbell, J. E.
    Berry, J. A.
    Seibt, U.
    Smith, S. J.
    Montzka, S. A.
    Launois, T.
    Belviso, S.
    Bopp, L.
    Laine, M.
    NATURE, 2017, 544 (7648) : 84 - 87
  • [3] Effects of Anthropogenic Activity on Global Terrestrial Gross Primary Production
    Melnikova, Irina
    Sasai, Takahiro
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (03)
  • [4] Large historical growth in global terrestrial gross primary production
    J. E. Campbell
    J. A. Berry
    U. Seibt
    S. J. Smith
    S. A. Montzka
    T. Launois
    S. Belviso
    L. Bopp
    M. Laine
    Nature, 2017, 544 : 84 - 87
  • [5] Global response of terrestrial gross primary productivity to climate extremes
    Yuan, Minshu
    Zhu, Qiuan
    Zhang, Jiang
    Liu, Jinxun
    Chen, Huai
    Peng, Changhui
    Li, Peng
    Li, Mingxu
    Wang, Meng
    Zhao, Pengxiang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 750
  • [6] Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit
    Zhang, Quan
    Ficklin, Darren L.
    Manzoni, Stefano
    Wang, Lixin
    Way, Danielle
    Phillips, Richard P.
    Novick, Kimberly A.
    ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (07)
  • [7] Increased atmospheric vapor pressure deficit reduces global vegetation growth
    Yuan, Wenping
    Zheng, Yi
    Piao, Shilong
    Ciais, Philippe
    Lombardozzi, Danica
    Wang, Yingping
    Ryu, Youngryel
    Chen, Guixing
    Dong, Wenjie
    Hu, Zhongming
    Jain, Atul K.
    Jiang, Chongya
    Kato, Etsushi
    Li, Shihua
    Lienert, Sebastian
    Liu, Shuguang
    Nabel, Julia E. M. S.
    Qin, Zhangcai
    Quine, Timothy
    Sitch, Stephen
    Smith, William K.
    Wang, Fan
    Wu, Chaoyang
    Xiao, Zhiqiang
    Yang, Song
    SCIENCE ADVANCES, 2019, 5 (08):
  • [8] Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks
    He, Bin
    Chen, Chen
    Lin, Shangrong
    Yuan, Wenping
    Chen, Hans W.
    Chen, Deliang
    Zhang, Yafeng
    Guo, Lanlan
    Zhao, Xiang
    Liu, Xuebang
    Piao, Shilong
    Zhong, Ziqian
    Wang, Rui
    Tang, Rui
    NATIONAL SCIENCE REVIEW, 2022, 9 (04)
  • [9] Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks
    Bin He
    Chen Chen
    Shangrong Lin
    Wenping Yuan
    Hans W.Chen
    Deliang Chen
    Yafeng Zhang
    Lanlan Guo
    Xiang Zhao
    Xuebang Liu
    Shilong Piao
    Ziqian Zhong
    Rui Wang
    Rui Tang
    NationalScienceReview, 2022, 9 (04) : 33 - 40
  • [10] Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency
    Haibo Lu
    Zhangcai Qin
    Shangrong Lin
    Xiuzhi Chen
    Baozhang Chen
    Bin He
    Jing Wei
    Wenping Yuan
    Nature Communications, 13