3D-printed polycaprolactone/tricalcium silicate scaffolds modified with decellularized bone ECM-oxidized alginate for bone tissue engineering

被引:8
|
作者
Menarbazari, Arezoo Ashrafnia [1 ]
Mansoori-Kermani, Amirreza [1 ]
Mashayekhan, Shohreh [1 ]
Soleimani, Afsane [2 ]
机构
[1] Sharif Univ Technol, Dept Chem & Petr Engn, Tehran, Iran
[2] Tarbiat Modares Univ, Fac Med Sci, Dept Clin Biochem, Tehran, Iran
关键词
3D printing; Bone tissue engineering; Decellularized bone matrix; Oxidized sodium alginate; Tricalcium silicate; TRICALCIUM PHOSPHATE; IN-VITRO; COMPOSITE; HYDROGELS; CELL; DEPOSITION; RESPONSES; STRENGTH; CEMENT; DEFECT;
D O I
10.1016/j.ijbiomac.2024.130827
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The treatment of large craniofacial bone defects requires more advanced and effective strategies than bone grafts since such defects are challenging and cannot heal without intervention. In this regard, 3D printing offers promising solutions through the fabrication of scaffolds with the required shape, porosity, and various biomaterials suitable for specific tissues. In this study, 3D-printed polycaprolactone (PCL)-based scaffolds containing up to 30 % tricalcium silicate (TCS) were fabricated and then modified by incorporation of decellularized bone matrix- oxidized sodium alginate (DBM-OA). The results showed that the addition of 20 % TCS increased compressive modulus by 4.5-fold, yield strength by 12-fold, and toughness by 15-fold compared to pure PCL. In addition, the samples containing TCS revealed the formation of crystalline phases with a Ca/P ratio near that of hydroxyapatite (1.67). Cellular experiment results demonstrated that TCS have improved the biocompatibility of PCL-based scaffolds. On day 7, the scaffolds modified with DBM and 20 % TCS exhibited 8-fold enhancement of ALP activity of placenta-derived mesenchymal stem/stromal cells (P-MSCs) compared to pure PCL scaffolds. The present study's results suggest that the incorporation of TCS and DBM-OA into the PCL-based scaffold improves its mechanical behavior, bioactivity, biocompatibility, and promotes mineralization and early osteogenic activity.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Biomimetic mineralization of 3D-printed polyhydroxyalkanoate-based microbial scaffolds for bone tissue engineering
    Kim, Dahong
    Lee, Su Jeong
    Lee, DongJin
    Seok, Ji Min
    Yeo, Seon Ju
    Lim, Hyungjun
    Lee, Jae Jong
    Song, Jae Hwang
    Lee, Kangwon
    Park, Won Ho
    Park, Su A.
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (02) : 489 - 499
  • [42] Hydrogel-integrated 3D-printed poly(lactic acid) scaffolds for bone tissue engineering
    Das, Mitun
    Sharabani-Yosef, Orna
    Eliaz, Noam
    Mandler, Daniel
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (19) : 3833 - 3842
  • [43] Bioactive 3D-printed chitosan-based scaffolds for personalized craniofacial bone tissue engineering
    Yousefiasl S.
    Sharifi E.
    Salahinejad E.
    Makvandi P.
    Irani S.
    Engineered Regeneration, 2023, 4 (01): : 1 - 11
  • [44] 3D-printed PLA-Gr-Mg composite scaffolds for bone tissue engineering applications
    Mohammadi-Zerankeshi, Meysam
    Alizadeh, Reza
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 22 : 2440 - 2446
  • [45] Hydrogel-integrated 3D-printed poly(lactic acid) scaffolds for bone tissue engineering
    Mitun Das
    Orna Sharabani-Yosef
    Noam Eliaz
    Daniel Mandler
    Journal of Materials Research, 2021, 36 : 3833 - 3842
  • [46] Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Lee, Chang-Min
    Yang, Seong-Won
    Jung, Sang-Chul
    Kim, Byung-Hoon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (04) : 2747 - 2750
  • [47] 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering
    Tariverdian, Tara
    Behnamghader, Aliasghar
    Milan, Peiman Brouki
    Barzegar-Bafrooei, Hadi
    Mozafari, Masoud
    CERAMICS INTERNATIONAL, 2019, 45 (11) : 14029 - 14038
  • [48] 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering
    Chen, Mi
    Zhao, Fujian
    Li, Yannan
    Wang, Min
    Chen, Xiaofeng
    Lei, Bo
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 106
  • [49] Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering
    Gharibshahian, Maliheh
    Salehi, Majid
    Beheshtizadeh, Nima
    Kamalabadi-Farahani, Mohammad
    Atashi, Amir
    Nourbakhsh, Mohammad-Sadegh
    Alizadeh, Morteza
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [50] Delivering Proangiogenic Factors from 3D-Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration
    Liu, Haoming
    Du, Yingying
    Yang, Gaojie
    Hu, Xixi
    Wang, Lin
    Liu, Bin
    Wang, Jianglin
    Zhang, Shengmin
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (23)