A novel network for semantic segmentation of landslide areas in remote sensing images with multi-branch and multi-scale fusion

被引:5
作者
Wang, Kai [1 ]
He, Daojie [1 ]
Sun, Qingqiang [2 ]
Yi, Lizhi [3 ]
Yuan, Xiaofeng [1 ]
Wang, Yalin [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] Great Bay Univ, Dongguan, Peoples R China
[3] Hunan Vocat Coll Engn, Dept Informat Engn, Changsha 410151, Peoples R China
关键词
Landslide; Transformer; Semantic segmentation; Remote sensing; Feature fusion;
D O I
10.1016/j.asoc.2024.111542
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Landslides pose significant risks as natural disasters, highlighting the importance of accurate mapping using remote sensing images for various practical applications. However, due to the challenges arising from incomplete and inaccurate boundary information of foreground landslide polygons, existing methods can only achieve suboptimal performance. To this premise, in this paper, we propose a segmentation network called GMNet that leverages global information extraction and multi -scale feature fusion to enhance the discrimination of landslides from other objects. Specifically, by employing a multi -branch mechanism, our method effectively captures global information, while an improved multi -scale feature fusion technique addresses the issue of varying scales in landslide polygons. Furthermore, semantic enhancement enhances the semantic information of low-level features, bridging the semantic gap and enhancing fusion efficacy. Experimental results demonstrate the effectiveness of our network in segmenting landslide areas accurately within the remote sensing image dataset. Especially, our F1_scores on three benchmarks outperform existing runner-ups by notable margins of 4.81%, 1.72%, and 1.16%, showcasing the value of our method in this domain.
引用
收藏
页数:13
相关论文
共 56 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   Convolutional neural networks applied to semantic segmentation of landslide scars [J].
Bragagnolo, L. ;
Rezende, L. R. ;
da Silva, R., V ;
Grzybowski, J. M., V .
CATENA, 2021, 201
[3]  
Chen LC, 2016, Arxiv, DOI arXiv:1412.7062
[4]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   DRs-UNet: A Deep Semantic Segmentation Network for the Recognition of Active Landslides from InSAR Imagery in the Three Rivers Region of the Qinghai-Tibet Plateau [J].
Chen, Ximing ;
Yao, Xin ;
Zhou, Zhenkai ;
Liu, Yang ;
Yao, Chuangchuang ;
Ren, Kaiyu .
REMOTE SENSING, 2022, 14 (08)
[7]   Ms RED: A novel multi-scale residual encoding and decoding network for skin lesion segmentation [J].
Dai, Duwei ;
Dong, Caixia ;
Xu, Songhua ;
Yan, Qingsen ;
Li, Zongfang ;
Zhang, Chunyan ;
Luo, Nana .
MEDICAL IMAGE ANALYSIS, 2022, 75
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   L-Unet: A Landslide Extraction Model Using Multi-Scale Feature Fusion and Attention Mechanism [J].
Dong, Zhangyu ;
An, Sen ;
Zhang, Jin ;
Yu, Jinqiu ;
Li, Jinhui ;
Xu, Daoli .
REMOTE SENSING, 2022, 14 (11)
[10]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929