Optimize the event selection strategy to study the anomalous quartic gauge couplings at muon colliders using the support vector machine and quantum support vector machine

被引:1
作者
Zhang, Shuai [1 ,2 ]
Guo, Yu-Chen [1 ,2 ]
Yang, Ji-Chong [1 ,2 ]
机构
[1] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China
[2] Liaoning Normal Univ, Ctr Theoret & Expt High Energy Phys, Dalian 116029, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 08期
关键词
PROTON-PROTON COLLISIONS; BOSON PAIR PRODUCTION; 2; JETS; PP COLLISIONS; ASSOCIATION; CONSTRAINTS; ROOT-S=8; PHYSICS;
D O I
10.1140/epjc/s10052-024-13208-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The search of the new physics (NP) beyond the Standard Model is one of the most important topics in current high energy physics. With the increasing luminosities at the colliders, the search for NP signals requires the analysis of more and more data, and the efficiency in data processing becomes particularly important. As a machine learning algorithm, support vector machine (SVM) is expected to to be useful in the search of NP. Meanwhile, the quantum computing has the potential to offer huge advantages when dealing with large amounts of data, which suggests that quantum SVM (QSVM) is a potential tool in future phenomenological studies of the NP. How to use SVM and QSVM to optimize event selection strategies to search for NP signals are studied in this paper. Taking the tri-photon process at a muon collider as an example, it can be shown that the event selection strategies optimized by the SVM and QSVM are effective in the search of the dimension-8 operators contributing to the anomalous quartic gauge couplings.
引用
收藏
页数:24
相关论文
共 120 条
  • [1] Observation of electroweak W±Z boson pair production in association with two jets in pp collisions at √s=13 TeV with the ATLAS detector
    Aaboud, M.
    Aad, G.
    Abbott, B.
    Abdinov, O.
    Abeloos, B.
    Abhayasinghe, D. K.
    Abidi, S. H.
    AbouZeid, O. S.
    Abraham, N. L.
    Abramowicz, H.
    Abreu, H.
    Abulaiti, Y.
    Acharya, B. S.
    Adachi, S.
    Adam, L.
    Bourdarios, C. Adam
    Adamczyk, L.
    Adelman, J.
    Adersberger, M.
    Adiguzel, A.
    Adye, T.
    Affolder, A. A.
    Afik, Y.
    Agheorghiesei, C.
    Aguilar-Saavedra, J. A.
    Ahmadov, F.
    Aielli, G.
    Akatsuka, S.
    Akesson, T. P. A.
    Akilli, E.
    Akimov, A., V
    Alberghi, G. L.
    Albert, J.
    Albicocco, P.
    Alconada Verzini, M. J.
    Alderweireldt, S.
    Aleksa, M.
    Aleksandrov, I. N.
    Alexa, C.
    Alexopoulos, T.
    Alhroob, M.
    Ali, B.
    Alimonti, G.
    Alison, J.
    Alkire, S. P.
    Allaire, C.
    Allbrooke, B. M. M.
    Allen, B. W.
    Allport, P. P.
    Aloisio, A.
    [J]. PHYSICS LETTERS B, 2019, 793 : 469 - 492
  • [2] Aaboud M, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2017)107
  • [3] Aad G., 2014, Phys. Rev. Lett., V113, DOI 10.1103/physrevlett.113.141803
  • [4] Probing stop pair production at the LHC with graph neural networks
    Abdughani, Murat
    Ren, Jie
    Wu, Lei
    Yang, Jin Min
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [5] Aksoy G., 2023, PROC 11 INT S DIGIT, DOI 10.1109/ISDFS58141.2023.10131123
  • [6] Akter MSTS, 2023, Arxiv, DOI [arXiv:2306.00284, 10.1109/COMPSAC57700.2023.00161]
  • [7] The muon Smasher's guide
    Al Ali, Hind
    Arkani-Hamed, Nima
    Banta, Ian
    Benevedes, Sean
    Buttazzo, Dario
    Cai, Tianji
    Cheng, Junyi
    Cohen, Timothy
    Craig, Nathaniel
    Ekhterachian, Majid
    Fan, JiJi
    Forslund, Matthew
    Garcia, Isabel Garcia
    Homiller, Samuel
    Koren, Seth
    Koszegi, Giacomo
    Liu, Zhen
    Lu, Qianshu
    Lyu, Kun-Feng
    Mariotti, Alberto
    McCune, Amara
    Meade, Patrick
    Ojalvo, Isobel
    Oktem, Umut
    Redigolo, Diego
    Reece, Matthew
    Sala, Filippo
    Sundrum, Raman
    Sutherland, Dave
    Tesi, Andrea
    Trott, Timothy
    Tully, Chris
    Wang, Lian-Tao
    Wang, Menghang
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2022, 85 (08)
  • [8] Alhroob M., 2012, arXiv
  • [9] Alternate methods for anomaly detection in high-energy physics via semi-supervised learning
    Ali, Mohd Adli Md
    Badrud'din, Nu'man
    Abdullah, Hafidzul
    Kemi, Faiz
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (23):
  • [10] The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations
    Alwall, J.
    Frederix, R.
    Frixione, S.
    Hirschi, V.
    Maltoni, F.
    Mattelaer, O.
    Shao, H. -S.
    Stelzer, T.
    Torrielli, P.
    Zaro, M.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07):