Continuity of Operator Functions in the Topology of Local Convergence in Measure

被引:0
作者
Bikchentaev, A. M. [1 ]
Tikhonov, O. E. [1 ]
机构
[1] Kazan Fed Univ, NI Lobachevsky Inst Math & Mech, Kremlevskaya Ul 35, Kazan 420008, Russia
关键词
Hilbert space; linear operator; von Neumann algebra; normal trace; measurable operator; local convergence in measure; continuity of operator functions; ALGEBRAS;
D O I
10.1134/S008154382401005X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a von Neumann algebra M of operators act on a Hilbert space H, and let tau be a faithful normal semifinite trace on M. Let t(tau l) be the topology of tau-local convergence in measure on the *-algebra S(M, tau) of all tau-measurable operators. We prove the t(tau l)-continuity of the involution on the set of all normal operators in S(M, tau), investigate the t(tau l)-continuity of operator functions on S(M, tau), and show that the map A -> vertical bar A vertical bar is t(tau l)-continuous on the set of all partial isometries in M.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 20 条
[1]   When weak and local measure convergence implies norm convergence [J].
Bikchentaev, A. ;
Sukochev, F. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (02) :1414-1431
[2]   Local convergence in measure on semifinite von Neumann algebras, II [J].
Bikchentaev, A. M. .
MATHEMATICAL NOTES, 2007, 82 (5-6) :703-707
[3]   The Topologies of Local Convergence in Measure on the Algebras of Measurable Operators [J].
Bikchentaev, A. M. .
SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (01) :13-21
[4]   Convergence in Measure and τ-Compactness of τ-Measurable Operators, Affiliated with a Semifinite von Neumann Algebra [J].
Bikchentaev, A. M. .
RUSSIAN MATHEMATICS, 2020, 64 (05) :79-82
[5]  
Bikchentaev A.M., 2006, Proc. Steklov Inst. Math., V255, P35
[6]  
Bikchentaev A.M., 2004, Lobachevskii J. Math., V17, P24
[7]   Minimality of convergence in measure topologies on finite von Neumann algebras [J].
Bikchentaev, AM .
MATHEMATICAL NOTES, 2004, 75 (3-4) :315-321
[8]  
Ciach L. J., 1988, Colloq. Math, V55, P109, DOI [10.4064/cm-55-1-109-121, DOI 10.4064/CM-55-1-109-121]
[9]  
DAVIES EB, 1972, J LOND MATH SOC, V4, P435
[10]   A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure [J].
Dodds, PG ;
Dodds, TK ;
Sukochev, FA ;
Tikhonov, OY .
POSITIVITY, 2005, 9 (03) :457-484