A modified iterative algorithm for solving split equality problems

被引:0
作者
Fu, Yuanmin [1 ]
Zhu, Li-Jun [2 ,3 ]
Wei, Haicheng [4 ]
机构
[1] Fu, Yuanmin
[2] 2,Zhu, Li-Jun
[3] Wei, Haicheng
来源
Zhu, Li-Jun (zhulijun1995@sohu.com) | 1600年 / Politechnica University of Bucharest卷 / 83期
关键词
Iterative methods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:45 / 54
相关论文
共 50 条
[42]   Iterative method for solving geometrically nonlinear inverse problems of structural element shaping under creep conditions [J].
K. S. Bormotin .
Computational Mathematics and Mathematical Physics, 2013, 53 :1908-1915
[43]   Iterative method for solving geometrically nonlinear inverse problems of structural element shaping under creep conditions [J].
Bormotin, K. S. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (12) :1908-1915
[44]   A Neumann-Neumann domain decomposition algorithm for solving plate and shell problems [J].
Le Tallec, P ;
Mandel, J ;
Vidrascu, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :836-867
[45]   Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer [J].
Zhu, Linghua ;
Tang, Ho Lun ;
Barron, George S. ;
Calderon-Vargas, F. A. ;
Mayhall, Nicholas J. ;
Barnes, Edwin ;
Economou, Sophia E. .
PHYSICAL REVIEW RESEARCH, 2022, 4 (03)
[46]   Iterative methods for solving scalar equations [J].
Kang, Shin Min ;
Ali, Faisal ;
Rafiq, Arif .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03) :1035-1042
[47]   Direct and Converse Theorems for Iterative Methods of Solving Irregular Operator Equations and Finite Difference Methods for Solving Ill-Posed Cauchy Problems [J].
Bakushinskii, A. B. ;
Kokurin, M. Yu. ;
Kokurin, M. M. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (06) :915-937
[48]   Direct and Converse Theorems for Iterative Methods of Solving Irregular Operator Equations and Finite Difference Methods for Solving Ill-Posed Cauchy Problems [J].
A. B. Bakushinskii ;
M. Yu. Kokurin ;
M. M. Kokurin .
Computational Mathematics and Mathematical Physics, 2020, 60 :915-937
[49]   Convergence analysis of discrete modified Newton scheme for solving ill-posed problems [J].
Rajan, M. P. ;
Pradeep, D. .
JOURNAL OF ANALYSIS, 2025,
[50]   Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems [J].
Hernandez-Veron, M. A. ;
Martinez, Eulalia ;
Teruel, Carles .
NUMERICAL ALGORITHMS, 2017, 76 (02) :309-331