Two-wavelength Quantum Dot Mid-Infrared Photodetectors Using Solution Process Method

被引:1
作者
Dortaj, Hannaneh [1 ]
Matloub, Samiye [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Tabriz, Iran
来源
2023 5TH IRANIAN INTERNATIONAL CONFERENCE ON MICROELECTRONICS, IICM | 2023年
关键词
Photodetector; Mid-infrared; Quantum dot; Solution process; Detectivity;
D O I
10.1109/IICM60532.2023.10443151
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This novel report is a way to achieve a mid-infrared photodetector based on quantum dots, which is designed and simulated to be fabricated by the solution process method, which provides low cost and ease of fabrication. To design the proposed structure, the absorber layer is composed of two different sizes of quantum dots, in which, thanks to the intersubband transitions of carriers, two separate wavelengths of the mid-infrared spectrum are detected. Then, with the help of resonant tunneling effect, the excited carriers flow towards the interdigitated contacts and the output photocurrent is generated. For theoretical modeling, the Coupled rate equations and the Schrodinger-Poisson equations are calculated. Simulation results indicate that the peak responsivities are about 7.5(A/W) and 8(A/W), and the specific detectivities D* are about 5x10(11)(cm.Hz(1/2)W(-1)) and 6x10(11)(cm.Hz(1/2)W(-1)) for the wavelengths of 3 mu m and 5 mu m, respectively.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 41 条
  • [1] A multicolor, broadband (5-20 μm), quaternary-capped InAs/GaAs quantum dot infrared photodetector
    Adhikary, Sourav
    Aytac, Yigit
    Meesala, Srujan
    Wolde, Seyoum
    Perera, A. G. Unil
    Chakrabarti, Subhananda
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (26)
  • [2] Advanced space-based detector research at the air force research laboratory
    Alsing, P. M.
    Cardimona, D. A.
    Huang, D. H.
    Apostolova, T.
    Glass, W. R.
    Castillo, C. D.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2007, 50 (2-3) : 89 - 94
  • [3] Multi-color tunneling quantum dot infrared photodetectors operating at room temperature
    Ariyawansa, G.
    Perera, A. G. U.
    Su, X. H.
    Chakrabarti, S.
    Bhattacharya, P.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2007, 50 (2-3) : 156 - 161
  • [4] Confinement enhancing barriers for high performance quantum dots-in-a-well infrared detectors
    Barve, A. V.
    Sengupta, S.
    Kim, J. O.
    Sharma, Y. D.
    Adhikary, S.
    Rotter, T. J.
    Lee, S. J.
    Kim, Y. H.
    Krishna, S.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (19)
  • [5] Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature
    Bhattacharya, P
    Su, XH
    Chakrabarti, S
    Ariyawansa, G
    Perera, AGU
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (19) : 1 - 3
  • [6] Characteristics of a multicolor InGaAs-GaAs quantum-dot infrared photodetector
    Chakrabarti, S
    Su, XH
    Bhattacharya, P
    Ariyawansa, G
    Perera, AGU
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (01) : 178 - 180
  • [7] High responsivity AlAs/InAs/GaAs superlattice quantum dot infrared photodetector
    Chakrabarti, S
    Stiff-Roberts, AD
    Bhattacharya, PB
    Kennerly, SW
    [J]. ELECTRONICS LETTERS, 2004, 40 (03) : 197 - 198
  • [8] Demonstration of InAs/InGaAs/GaAs Quantum Dots-in-a-Well Mid-Wave Infrared Photodetectors Grown on Silicon Substrate
    Chen, Wei
    Deng, Zhuo
    Guo, Daqian
    Chen, Yaojiang
    Mazur, Yuriy, I
    Maidaniuk, Yurii
    Benamara, Mourad
    Salamo, Gregory J.
    Liu, Huiyun
    Wu, Jiang
    Chen, Baile
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (13) : 2572 - 2581
  • [9] Dalven R., 1974, SOLID STATE PHYS, V28, P179
  • [10] Homogeneous and inhomogeneous linewidth broadening of single polar GaN/AlN quantum dots
    Demangeot, F.
    Simeonov, D.
    Dussaigne, A.
    Butte, R.
    Grandjean, N.
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, SUPPL 2, 2009, 6 : S598 - S601